ELECTRICAL POWER ENGINEERING
This paper describes the comparative analysis of the main structural schemes for reserved automatic control and regulation devices of important objects of power supply with increased reliability requirements. There were analyzed schemes of passive and active doubling with control device, passive and active tripling, combined redundancy and majority redundancy according to schemes: “two from three” and “three from five”. On the results of calculations fulfilled there was made comparison of these schemes for ideal devices of built-in control and ideal majority elements. Scales of preferences of systems according to criterion of average time maximum and average probability of no-failure operation were built. These scales have variable character, depending on intervals in which there is a parameter obtained by multiplication of failure rate and time. The sequence of systems’ preferences is changing and is depending on each system failures and in moments of curves crossing of average probability of no-failure operation of systems. Analysis of calculation results showed the advantages of tripling systems and combined redundancy in reliability and this is achieved by a great amount of expenses for these systems creation. Under definite conditions the reliability of system of passive tripling is higher compared to system of active doubling. The majority schemes allow determining not only the full but also single (metrological) failures. Boundary value of unreliability of built-in control device is determined, and this allows making a perfect choice between systems of active and passive redundancy.
This article describes aerodynamic losses of damping, or aerodynamic instability, which we observe in experiments and in engineering practice. As applied to industrial high-voltage lines this phenomenon is usually called galloping (dancing) of phase line wires. This phenolmenon can be explained by Lyapunov’s instability of equilibrium state of wires profile (cross-section). In addition to known condition of Grauert-den-Hartog’s instability there was obtained practical condition of instability, which depends only on stationary aerodynamic profile’s factor – dimensionless coefficient of head resistance and lift coefficient, and also on their derivative with respect to the angle of attack.
There was suggested an effective numerical-analytical method of investigation of stability for equilibrium of profile’s state in flow, which was developed at the department “Applied mathematics” of Bauman MSTU. This method allows to determine the stationary aerodynamics characteristics of profile by numerical simulation of profile flow under different angles of attack by vortex element method and later on the application of analytical conditions of stability and Lyapunov’s instability of equilibrium positions. The obtained results during the investigation of rhombic and square profiles stability, as well as general profile of iced wire, and their comparisons with the known experiments’ results in aerodynamic tubes indicate the precision of developed methods and algorithms. The usage of mesh-free Lagrange method of vortex elements and software for their realization allows to solve also dual problems of aerohydroelasticity and to carry out direct numerical simulation of profile movement in flow. In this article the investigations’ results of different authors in this field were taken into account.Breakers relate to Electric Power Systems’ equipment, the reliability of which influence, to a great extend, on reliability of Power Plants. In particular, the breakers determine structural reliability of switchgear circuit of Power Stations and network substations. Failure in short-circuit switching off by breaker with further failure of reservation unit or system of long-distance protection lead quite often to system emergency.
The problem of breakers’ reliability improvement and the reduction of maintenance expenses is becoming ever more urgent in conditions of systematic increasing of maintenance cost and repair expenses of oil circuit and air-break circuit breakers. The main direction of this problem solution is the improvement of diagnostic control methods and organization of on-condition maintenance. But this demands to use a great amount of statistic information about nameplate data of breakers and their operating conditions, about their failures, testing and repairing, advanced developments (software) of computer technologies and specific automated information system (AIS).
The new AIS with AISV logo was developed at the department: “Reliability of power equipment” of AzRDSI of Energy. The main features of AISV are:
- · to provide the security and data base accuracy;
- · to carry out systematic control of breakers conformity with operating conditions;
- · to make the estimation of individual reliability’s value and characteristics of its changing for given combination of characteristics variety;
- · to provide personnel, who is responsible for technical maintenance of breakers, not only with information but also with methodological support, including recommendations for the given problem solving and advanced methods for its realization.
НEAT POWER ENGINEERING
Considers the current key energy problem – the rational and efficient use of energy resources, and the possibility of its solution, based on the concept of intensive energy conservation. As a result, the way of primary energy consumption reduction in Belarus is provided. The initial situation in the frame of program of further improvement of energy consumption until 2030 is estimated. It is shown, that for Belarus the first place in energy saving measures takes the efficiency improvement of natural gas consumption, what allows reducing the investment and saving energy resources.
The possibility of usage of waste energy flows of medium-and low-temperature from industrial and municipal enterprises are discussed. To realize the described possibilities, some changes of heat supply system of enterprises and plants are required. Changes in heat supply system of the industrial enterprises, related with usage of low-temperature waste energy flows in a thermal energy generation process for heating, require the installation of additional equipment in existing heat energy supply system, such as absorption heat pumps, which are easily joint and successfully work at boiler Houses as well as at CHP. The numerous examples of fuel consumption reduction via heat industrial waste and sewage usage are shown in this article. It must be emphasized, that such an expansion of energy-saving framework not only reduce the primary energy consumption by heat generating sources, but also significantly improves the conditions of the Belarusian electrical grid operation under the conditions of nuclear power plant commissioning. The existing technical framework, that ensured the proposed changes, is also taking into account.
Modern Cooling Towers (CT) may utilize different aerodynamic elements (deflectors, windbreak walls etc.) aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.
Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity) at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.
Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.
Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.
The development of thermal contaminated air stream formed above the surface of lengthy heated plate is investigated on the basis of the mathematical model of heat and mass transfer processes. The numerical simulation results performed for the purpose of finding a way to prevent the contaminants outflow from the hood in the presence of external influence are given. Three variants of the hood side panels lengthening are considered: on either side; on the side of the fresh air supply; on the side opposite to the location of air distributors. Comparison of the effects of using these variants of hood design allowed determining that the hood panel located on the side of the coming air flow gives the greatest leakage reduction. It is found out that lengthening of the hood side panels does not ensure full localization of the contaminated convective stream.
Several variants of using the screen located on the side of the lateral air flow were investigated in the course of work. Best result is observed under conditions of application of the screen symmetrically located relative to spacing between the hood and the plate. The analysis of local values of temperature and velocity fields in this case shows that losses of heated contaminated air to the workshop space are practically absent. It is found out that the convective stream can be most efficiently localized under the condition of hood-symmetric distribution of supply air. Influence of the open gate on convective stream formation in the workshop space with heat emission is considered. The shift of upward flow to the opposite side relative to the gate is observed. The radiant heat release from the board is of great importance in the temperature field formation of closely located areas of floor and walls surfacesHYDRAULIC POWER ENGINEERING
The purpose of this work is the study of decolmatation rate of granular layer of gravel pack of well during creating inside of it flushing of reagent with given hydrodynamic parameters and determination the duration of treatment. This article deals with radical movement of chemical solutions by injection of it outside of gravel pack of filter when the flow directs to borehole axis under conditions of quasi-steady-state mode of filtration for equal yield of input and output reagent from borehole.
Colmataged layer of gravel pack is schematized in the form of porous ring cylinder with outside radius which is equal to radius of line of gravel pack and the height which is equal to the length of filter made in formation drilling and inside radius which is equal to radius of filter. Initial saturation of subsoil with colmatant is given. It was accepted that reagent with given rate flows through outside surface of ring cylinder equal along all height. Near-filtering zone is given uniform and movement is quasi-steady-state.
Equations’ system is composed including: joint equation of movement and mass conservation and generalized equation of kinetics, which describes kinetics of colmatant dissolution in the regime of out-pipe watering of ring gravel pack of well taking into account the change of structure of porous medium. The analytic solution of equations’ system was obtained, which allow to calculate salt content in reagent during the leaching process and to determine the specific volume of deposits in the point of gravel pack at any moment of time in the process of regent injection. The analytic dependence was obtained for calculation of duration of complete regeneration of soil grains’ layer of outer contour of gravel packing. For calculation of duration of full regeneration of the whole thickness of packing it is suggested to divide the regeneration period into a series of stages of salt transferring from subsoil. Duration of one stage is equal to time which is necessary for reagent to pass ring part. Each phase is calculated separately, as the initial specific volume of deposits in inflow section is changing after each previous phase, and this demands the correction of border conditions. Methods of stage calculation of regeneration duration for achievement of required level of decolmatation is realized on computerISSN 2414-0341 (Online)