Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск
Том 65, № 1 (2022)
Скачать выпуск PDF
https://doi.org/10.21122/1029-7448-2022-65-1

ЭЛЕКТРОЭНЕРГЕТИКА 

5-21 751
Аннотация

Искусственные нейронные сети все чаще используются в различных отраслях электроэнергетики, в том числе в релейной защите. Традиционные микропроцессорные устройства релейной защиты функционируют по принципу вычисления действующих значений контролируемых сигналов тока и напряжения и сравнения их с заранее заданными уставками. Однако вычисляемые действующие величины не всегда отражают реальные процессы, происходящие в защищаемом электрооборудовании, ввиду, например, насыщения трансформатора тока. В таком режиме вторичный ток имеет характерную искаженную форму, которая существенно отличается от идеальной (истинной). Это ведет к занижению вычисляемого релейной защитой действующего значения основной гармоники вторичного тока по сравнению с его истинной действующей величиной и приводит к затягиванию времени срабатывания или отказу функционирования устройств релейной защиты. Одно из перспективных приложений искусственной нейронной сети для целей релейной защиты – восстановление истинной формы сигнала вторичного тока трансформатора тока при его насыщении. В статье рассмотрены этапы реализации нейронной сети в среде MATLAB на примере ее обучения восстановлению искаженной формы вторичного тока. Выполнена проверка функционирования разработанных нейронных сетей в MATLAB-Simulink. С использованием пакета расширения SimPowerSystems реализована модель, позволяющая имитировать режим насыщения трансформатора тока, сопровождающийся искажением формы сигнала его вторичного тока, и ее последующее восстановление с помощью искусственных нейронных сетей. Полученные результаты подтвердили способность нейронных сетей практически полностью восстанавливать искаженную форму вторичного тока трансформатора тока. Применение обученных искусственных нейронных сетей в реальных устройствах релейной защиты представляется перспективным, поскольку обеспечивает повышение их быстродействия и надежности функционирования.

22-36 507
Аннотация

«Залипание» и вибрации статора генератора на постоянных магнитах приводят к его усиленному износу, шумности, снижению эффективности работы. В статье теоретически рассмотрена возможность устранения момента трогания и осцилляций момента вращения генератора на постоянных магнитах без нагрузки за счет взаимной компенсации взаимодействия катушек с полем постоянных магнитов при определенной симметрии этого поля. Данное явление названо пи-резонансом. Для заданного класса модельных потенциалов взаимодействия поля постоянных магнитов и катушек показано, что полная компенсация наступает при определенном числе катушек (Ns) и магнитов (Nr), в то время как для прочих комбинаций {Ns, Nr} взаимодействие носит характер осцилляций. Приведены соответствующие таблицы для различных классов потенциалов, которые могут служить основой для принятия конструкторских решений при создании генераторов. Пи-резонанс реализуется с большей вероятностью для четного числа катушек статора и нечетного числа магнитов, а также при увеличении числа катушек статора. Рассмотрены случаи как одностороннего, так и двустороннего расположения статоров относительно ротора. Численным моделированием показано, что пи-резонанс легко разрушается, в случае если размещение магнитов или катушек выполнено неточно, а также при внесении асимметрии в потенциал магнитного поля. Погрешность в угловом расположении катушек в 1° может привести к появлению существенного «зацепления» ротора с энергией порядка энергии взаимодействия изолированной пары магнит – катушка. К аналогичному по масштабу результату приводит нарушение симметрии потенциала, соответствующее добавлению пилообразной функции амплитудой 10 % от амплитуды симметричного периодического потенциала. Найденные закономерности могут быть использованы при проектировании эффективных генераторов с низким уровнем шума и вибраций.

37-51 482
Аннотация

Проблемы компенсации реактивной мощности и повышения качества электрической энергии в системах электроснабжения промышленных предприятий нераздельно связаны. Их актуальность обусловлена широким применением электроприемников, потребляющих реактивную мощность и искажающих качество электрической энергии в сети, а также внедрением в производство новых технологий, систем и оборудования, предъявляющих повышенные требования к качеству электрической энергии. Важной характеристикой качества электрической энергии, нормируемого ГОСТ 32144–2013, является несинусоидальность напряжения. Основная причина несинусоидальности напряжения в электрических сетях промышленных предприятий – применение электрооборудования с нелинейной вольт-амперной характеристикой, являющегося источником кондуктивных электромагнитных помех, в частности: регулируемых электроприводов постоянного и переменного тока, источников бесперебойного питания электроприемников, электросварочного оборудования, дуговых электрических печей, установок индукционного нагрева, газоразрядных источников излучения. Вследствие нелинейности вольт-амперных характеристик указанные выше устройства потребляют из сети несинусоидальный ток, что вызывает гармонические искажения питающего напряжения, включающего основную гармоническую составляющую и высшие гармонические составляющие, кратные основной частоте. Несинусоидальность напряжения, в свою очередь, вызывает дополнительные потери мощности и энергии в элементах электрической сети, приводит к перегреву и ускоренному старению изоляции электрооборудования, снижая его эксплуатационную надежность и уменьшая срок службы, ухудшает точность электрических измерений, вызывает нарушения в работе систем автоматики, телемеханики, релейной защиты, электронных систем и коммуникаций. Кроме того, она существенно усложняет компенсацию реактивной мощности в электрической сети. Компенсирующие устройства выполняются на базе конденсаторов, электрические параметры которых (сопротивление, мощность, ток) зависят как от величины питающего напряжения, так и от его гармонического состава. В настоящей статье обозначены проблемы и предложены решения в части компенсации реактивной мощности и повышения качества электрической энергии в электрических сетях, содержащих тиристорные преобразователи напряжения и преобразователи частоты, применяемые в установках регулируемого электропривода промышленных предприятий.

ТЕПЛОЭНЕРГЕТИКА 

52-66 575
Аннотация

Приведены результаты численных исследований, выполненных на основе разработанной авторами статьи математической модели, посвященных изучению влияния различных факторов на характеристики процесса тепловой обработки композитных изделий в промышленных теплотехнологических установках при наличии внутренних тепловыделений, распределенных по объему отдельных слоев изделия. Предложена формулировка граничных условий для этой модели с учетом многослойной структуры изделий и особенностей организации процесса их тепловой обработки в теплотехнологической установке. Подробное описание математической модели представлено в предыдущих работах. В данном исследовании в качестве характеристик процесса тепловой обработки изучены функции распределения температуры и коэффициента (степени) гидратации в пространственных областях, составляющих изделие. Рассмотрены модельные композитные изделия одинаковой формы и структуры, но разного объема, состоящие из двух слоев материала, в которых протекает экзотермическая реакция гидратации, разделенных слоем пенополистирола. Температурно-временной режим тепловой обработки принимался близким к используемому в промышленных условиях при производстве трехслойных наружных стеновых панелей. Граничные и начальные условия соответствовали режиму тепловой обработки на плоских стендах с водяным подогревом и укрытием изделий сверху. Установлено, что наличие теплоизоляционного слоя в середине изделия, разделяющего слои c внутренним источником тепловыделений, существенным образом изменяет распределение значений температуры и коэффициента гидратации в верхнем и нижнем слоях. Увеличение характерного объема изделия ведет к существенному возрастанию влияния внутренних объемных тепловыделений на процессы нагрева и гидратации, обусловленные протеканием реакции гидратации.

67-75 546
Аннотация

Система удаления водорода обеспечивает водородную безопасность. На АЭС с ВВЭР она состоит из пассивных каталитических рекомбинаторов водорода. Расчет устройств имеет большое значение для обоснования безопасности, поскольку сложные условия аварии на энергоблоке невоспроизводимы в экспериментах. Рекомбинатор состоит из корпуса и кассеты c каталитическими элементами, конструкция которых обеспечивает прохождение газообразной среды через устройство. При контакте с катализатором происходит химическая реакция соединения водорода и кислорода, сопровождающаяся выделением теплоты, в результате концентрация водорода под оболочкой снижается. Проблемой является пуск из холодного состояния: активность холодного катализатора низка, а тяга не наблюдается до нагрева катализатора и формирования столба теплого газа внутри устройства. Переход из холодного состояния в рабочее занимает определенное время, в течение которого производительность рекомбинатора меньше номинальной. Время пуска – важный для безопасности параметр. В статье проведен расчет времени пуска рекомбинатора водорода с каталитическим блоком в форме эквидистантных параллельных каталитических пластин. Используются средние по местному сечению величины и коэффициенты передачи, последние учитывают влияние свободной конвекции и химической реакции. Скорость газа определяется по балансу сил плавучести и сопротивления. Расчетные и известные из научно-технической литературы данные совпадают удовлетворительно. В качестве консервативной оценки времени пуска рекомбинатора рекомендуется использовать величину 300 с. Рост температуры практически не влияет на запуск рекомбинатора с активным катализатором, повышение концентрации водорода ускоряет запуск, понижение давления его замедляет. Полученные результаты могут использоваться при обосновании безопасности АЭС с ВВЭР и экспертизе отчетов по обоснованию безопасности энергоблоков.

76-88 619
Аннотация

Разработана программа для выбора, расчета и термодинамического анализа турбоустановок на органическом цикле Ренкина, позволяющая получить значения оптимальных параметров рабочего тела, а также выбрать рабочее тело с наибольшим эксергетическим коэффициентом полезного действия для циклов на перегретом паре и с промежуточным перегревом. Представлена структура разработанной математической модели для проведения термодинамического анализа. Исследования проводили при давлении до 20 МПа и температурах рабочего тела: перед турбиной до 250 °С, на выходе из конденсатора 25 °С, максимально допустимой на выходе из промежуточного перегревателя 250 °С. Анализ полученных результатов показывает, что промежуточный перегрев в органическом цикле Ренкина, как и в классическом паротурбинном, приводит к повышению эксергетической эффективности. В среднем прирост эксергетического коэффициента полезного действия при оптимальных параметрах составляет 4,28 %, а для некоторых рабочих тел значительно превосходит этот результат (например, 8,14 и 6,56 % для R717 и R32 соответственно), что обусловлено их теплофизическими свойствами. Погрешность для всех низкокипящих рабочих тел не превышает 2 % от полученного результата эксергетической эффективности. Для исследуемых схем на примере хладагента R245FA построены диаграммы Грассмана – Шаргута. Эксергетический анализ показывает, что промежуточный перегрев при термодинамически оптимальных параметрах рабочего тела перед частями высокого и низкого давления турбины приводит к снижению потерь эксергии в котле-утилизаторе, значительному увеличению регенерации в теплообменном аппарате, увеличению потерь эксергии в насосе и их перераспределению в турбоагрегате, теплообменном аппарате и конденсаторе

89-98 1107
Аннотация

Алюминиевые радиаторы различных марок получили широкое распространение на рынке нагревательных приборов. Снизить затраты на изготовление радиаторов можно путем уменьшения поверхности теплоотдающих внутренних ребер. При этом сохраняется их внешний вид, а заявленная производителем теплоотдача остается достаточно высокой. Постановлением Правительства Российской Федерации от 17 июня 2017 г. № 717 введена обязательная сертификация всех типов отопительных приборов. Отклонения указанной в паспорте прибора номинальной тепловой мощности секции от показателей, установленных по результатам испытаний, не должны превышать предельно допустимых значений (от –4 до +5 %). Как правило, ранее испытания производителем не проводились. Таким образом, изучение влияния схемы подключения радиатора с уменьшенной поверхностью ребер на его теплотехнические характеристики является актуальной задачей. В статье представлены результаты исследований заводского алюминиевого радиатора с уменьшенной поверхностью ребер марки STI Сlassic тепловой мощностью 1,92 кВт при расчетных условиях. В заданной теплоотдаче прибора не учитывается схема его подключения. Уменьшение внутренних и тыльных ребер снизило площадь его поверхности на 28,8 %. В результате проведенных экспериментов установлено, что тепловая мощность прибора ниже заявленной на 22 % при подключении сверху вниз и на 48 % – при подключении снизу вверх при расчетных условиях. В теплый период отопительного сезона при небольшой разности температур теплоносителя и воздуха в помещении средняя тепловая мощность радиатора совпадает с заявленным значением.

 



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)