ELECTRICAL POWER ENGINEERING
The intensity of the electrodynamic action of currents of a short circuit on the flexible conductors of overhead lines depends on the magnitude of currents of short-circuit. The commis sioning of new capacities is inevitably accompanied by an increase in short circuit currents in the nodes of the grid, so the need to limit peaks of tension arising in a short-circuit can acquire a special relevance at a certain stage of development of the power system. At short circuit currents over 40 kA the mechanical force and displacement of the wires can have a decisive influence on the structural performance of flexible bus as of single wires as well as of split phases. In this regard there is a need for the development and use of new structural elements enhancing electrodynamic stability of flexible busbars of outdoor switchgear. One such element is a tension damper. The damper is installed between the portal and the insulator string and limits the transmission of undesirable forces on the portals in a short circuit. The numerical method of calculation of dynamics of flexible wires of switchgear and overhead lines in a short-circuit taking into account influence of a tension damper has been developed. This method was used for modification of the computer program of calculation of electrodynamic stability. With the aid of the computer program it was demonstrated that the installation of the tension damper makes it possible to cut off peaks of the tension of wire in a short circuit at the initial stage of movement of the conductors. However, in spans of a great length after the actuation of the damper the occurrence of new bursts of tension is possible due to the sudden stop of the wire.
The main aspects of creation of the formal-and-functional mathematical models supporting a system for prompt resolution of repair requires in a complex electric power system are considered in the article. In accordance with the standards of repairs, inspections, replacement of elements of the main equipment or devices of a system of automation, inclusion of spare capacity, various switches, as well as with the frequency of outages adopted in practice, the decisionmaking process is formalized and automated as the problem of scheduling optimal daily schedules of blackouts, functioning as a part of automated system of dispatching management of electric power system. The main problems that hinder mathematical modeling of decision-making concerning operational applications for the repair of the main power equipment of power system are: the need for a coherent account of a large number of limiting factors and indicators of effectiveness of the solutions; the need of information and algorithmic trade-offs with the objectives of adjacent levels of spatial, temporal and functional hierarchy; the lack of developments in the standardization of information structures that adequately reflect the process of finding solutions; the computational complexity of several restrictions of the optimization problem subject to mandatory registration.
The article considers a mixed problem with homogeneous boundary conditions for onedimensional homogeneous wave equation. Such a problem can arise, for example, when studying oscillations of current and voltage in the conductor through which electric current flows, while the line is free from distortion. The solution can be found with the use of the Fourier method in the form of trigonometric series. This representation is of purely theoretical interest, because the real calculation should be, first, to find a large number of coefficients of the integrals, which in itself is not a trivial task and, second, it is almost impossible to assess the error of the calculations. An alternative way of solving this problem based on the use of transcendental functions i. e. polylogarithms that represent complex power series of a special kind. The exact solution of the problem is expressed through the imaginary part of a polylogarithm of the first order on the single circle and the approximate one – via the real part of the dilogarithm. In addition, if the initial conditions in the problem are elementary functions, then the solution is also computed using elementary functions. A simple and effective error estimate of the approximate solution has been found. It does not depend on time and it has the first-order of accuracy regarding the step of a partitioning segment of the numerical axis on which the problem is considered. This valuation is uniform with respect to the variables of the problem – both spatial and temporal.
Power flow control is an important task of development of electric power systems. It is necessary to reduce the power loss, improve the reliability and quality of power supply and increase the power transmission. Currently, on the basis of modern power electronics effective FАСТS devices for flexible control of power system operation modes have been developed. FАСТS devices are able to simultaneously influence the voltage, the reactance, the angle between the voltages. As it is known, the calculations of the established modes of electric systems are the most frequently performed tasks at all the territorial and time levels of control and planning operations. These calculations are significant by themselves, being also an integral part of software systems of calculation of losses of power and energy in electrical networks, calculation of optimal modes and also sustainability. The need for multiple mode calculation imposes high requirements to the methods of calculation of the established modes in real time in terms of performance and reliability of the results of the solution being obtained under operating conditions of electric power systems. In traditional calculations of the established modes of electrical networks, shunt reactors, current-limiting reactors, capacitor banks, longitudinal compensation devices were accounted in the simulation as passive elements. In regard with the introduction of FACTS devices in power systems, there is an arising need to develop appropriate algorithms and implement them in the form of software for analyzing and controlling the established modes of power systems. The methodology and software for calculation of the established modes of electric networks with consideration of FACTS devices have been developed. The software makes it possible to obtain practically acceptable solutions in three outer iterations. Based on the results of numerical simulation of modes of the power system of the “Azerenergy” JSC it was determined that the application of FACTS devices can significantly increase the transmission line active power, improve voltage levels and reduce losses of active power. The dependences of flows and power losses on the control parameter of FACTS devices have been derived.
НEAT POWER ENGINEERING
The technique and results of experimental study of heat transfer of a single bundle consisting of bimetallic tubes with helically knurled edges, in natural and mixed convection of air are presented. Mixed convection, i.e. a heat transfer, when the contribution of free and forced convection is comparable, was created with the help of the exhaust shaft mounted above the heat exchanger bundle and forced air movement was created by the difference in density of the air in the shaft and the environment. The experimental dependence of the heat transfer of finned single row of bundles in the selected ranges of Grashof and Reynolds numbers has been determined. It is demonstrated that heat transfer in the mixed convection is 2.5−3 times higher than in free one and the growth rate of heat transfer with increasing Reynolds number is more than in the forced convection. Different forms of representation of results of experiments were analyzed and it was determined that the Nusselt number has a single power dependence on the Reynolds number at any height of the exhaust shafts. A linear dependence of the Reynolds number on the square root of the Grashof number was determined as well as the proportionality factors for different shaft heights. It is noted that the characteristics of the motion of air particles in the bundle in free convection is identical to the motion of particles in forced convection at small Reynolds numbers, i.e. a free convection flow smoothly flows into a forced convection one without the typical failures or surges if additional driving forces arise.
In the present work the main directions of water desalination technologies improving have been analyzed. Possible techniques of high-quality treatment of water that enable the reduction of amounts of environmentally hazardous substances to be discharged into the hydrosphere are indicated. The purpose of the work was to improve the ecological efficiency and the effectiveness of water treatment equipment at heat power plants when designing new and the modernizing existing water treatment schemes. In order to achieve this goal the following problems have been solved: the one of analyzing the main directions of the improvement of technologies of working body of water preparation at thermal and nuclear power plants; of analyzing the main directions of reduction of total volume of highly mineralized power plant wastewaters; of developing the technological scheme of recycling of concentrate of membrane installations and regenerants of ionite filters in acid and alkali; of developing the technological scheme of transformation of the sludge in pre-processing waste into valuable commodity products. The results of research can be applied for the design of new and the modernization of existing water treatment installations of thermal and nuclear power plants. It will enable to reduce considerably the use of natural water and the amount of chemicals added as well as the volume of wastewater and the concentration of dissolved solids in it. As a consequence, the negative impact of thermal and nuclear power plants on the hydrosphere will be reduced.
HYDRAULIC POWER ENGINEERING
A current problem of reservoirs is their functioning in conditions of a changing climate. In such conditions, water resources management of water bodies as well as assessment their state and ongoing processes require permanent monitoring and analysis. The aim of the author of the present work was to study the intensity of external water exchange in Dneprodzerzhinsk reservoir, the horizontal and vertical components of the water cycle and the economic use of the water body. On the basis of the components of the water balance the external water exchange in the reservoir has been studied taking into account the yearlong water content during the whole period of the reservoir operation, viz. during the water-aboundant year1970, the law-water year 1972 and the very much law-water year 2015. Intensity factors and indicators of external water exchange for each month of the year, and for the months of the maximum and minimum intensity of the external water exchange during a unit of time, as well as the main factor influencing on the water exchange, viz. the lateral inflow in the reservoir have been determined. The maximum intensity of the external water exchange in the reservoir during a very dry year has deteriorated in the spring and autumn periods of its operation fourfold as compared with the one of the highwater year. It is determined that the higher the intensity of the external water exchange is, the less the indicator of the external water exchange during a unit of time is and the more intensively an exchange and self-purification of the water in the reservoir are being fulfilled. If the rate of external water exchange is less than one, then the shift of regulatory water resources of the reservoir will take place in less than a year. The results of the study can be useful in developing modes of reservoir operation in conditions of a climate change.
ISSN 2414-0341 (Online)