ELECTRICAL POWER ENGINEERING
Principles of implementation of current protection of elements of electric power systems with power transformers are considered. In some cases, in facilities with power transformers there could be an inrush of a magnetizing current that can cause a false positive current protection. The special measures of blocking of current protection ought to be taken to avoid this. The methods of implementation of blocking digital current protection when magnetizing current inrush takes place are described. The main way of blocking protection from magnetizing current inrush is tuning-out by harmonics content. The presence of lower harmonics content serves as a criterion of permitting operation of the protection and the higher harmonics content, on the contrary, indicates the appearance of magnetizing current inrush and is used to block the protection action. The operation condition of blocking of digital protection from magnetizing current inrush is presented. A realization of digital part of implementation of current protection blocking is described and the functional scheme of the latter is considered. The scheme contains conditioners of orthogonal components of signals of the first and second harmonics as well as the filters of positive and reverse sequences and blocks of determination of amplitudes. The blocks compute current amplitudes of first harmonic of positive sequence and the negative sequence current of the second harmonic with the use of the orthogonal components. By these values the characteristic quantity of blocking is calculated, which is compared with the activation setpoint. The improvement of performance of the principles of blocking current protection of electric transformers with current magnetizing inrush has been suggested by incorporating the digital part the block of the maximum value formation that determines the maximum amplitude of the first harmonic of the total current into the functional block scheme.
The increase in unit capacity of electric equipment as well as complication of technological processes, devices control and management of the latter in power plants and substations demonstrate the need to improve the reliability and accuracy of measurement information characterizing the state of the objects being managed. The mentioned objective is particularly important for nuclear power plants, where the price of inaccuracy of measurement responsible process variables is particularly high and the error might lead to irreparable consequences. Improving the reliability and accuracy of measurements along with the improvement of the element base is provided by methods of operational validation. These methods are based on the use of information redundancy (structural, topological, temporal). In particular, information redundancy can be achieved by the simultaneous measurement of one analog variable by two (duplication) or three devices (triplication i.e., triple redundancy). The problem of operational control of the triple redundant system of measurement of electrical analog variables (currents, voltages, active and reactive power and energy) is considered as a special case of signal processing by an orderly sampling on the basis of majority transformation and transformation being close to majority one. Difficulties in monitoring the reliability of measurements are associated with the two tasks. First, one needs to justify the degree of truncation of the distributions of random errors of measurements and allowable residuals of the pairwise differences of the measurement results. The second task consists in formation of the algorithm of joint processing of a set of separate measurements determined as valid. The quality of control is characterized by the reliability, which adopted the synonym of validity, and accuracy of the measuring system. Taken separately, these indicators might lead to opposite results. A compromise solution is therefore proposed. The quality of the evaluation of the measured signal is characterized by a single comprehensive measure that takes account of both reliability and accuracy properties of the system. This indicator is the average precision measure which is the weighted average error of the various possible states of a group of three devices.
Interior permanent magnet synchronous motor (IPMSM) refers to salient-pole synchronous motors, characterized by inequality of inductances of longitudinal (d) and transverse (q) axes. Electromagnetic torque of IPMSM consists of two components: active torque and reactive torque; the latter depends on inductances of d and q axes. An analytical method to calculate own inductances and mutual inductances of a three-phase IPMSM is presented. Distributed windings of the stator are substituted by equivalent sine distributed windings. An interior permanent magnets rotor is substituted by an equivalent salient-pole rotor. Sections of a magnetic circuit comprising interior permanent magnets, air barriers and steel bridges are substituted by equivalent air-gap. The expressions of the magnetic induction created by current of the stator windings at each point of the air gap as well as of magnetic flux linkage of the stator windings have been obtained. The equations of the self-inductances of phases A, B, C, and of inductance of mutual induction are determined from magnetic flux linkage. The inductance of the d and q axes have been obtained as a result of transformation of the axes abc–dq. The results obtained with the use of the proposed analytical method and the finite element method are presented in the form of a graph; the calculations that have been obtained by these two methods were compared.
НEAT POWER ENGINEERING
In Belarus oil refining and oil producing industries are paid close attention. On the background of the active maintaining the level of oil processing and volume of oil extraction in our country and in the countries of the Eurasian Economic Union there is a steady formation of hydrocarbon-containing waste; therefore recycling of the latter is an urgent task to improve the competitiveness of production. The most cost-effective way of using hydrocarbon waste is the conversion of it into power resources. In this case it is possible to obtain significant power-saving and economic effect of the combined use of a hydrocarbon, wood, agricultural and other combustible waste, meanwhile improving the ecological situation at the sites of waste storage and creating a solid fuel with the necessary energy and specified physical-and-chemical properties. A comprehensive solution of a recycling problem makes it possible to use as energy resources a lot of waste that has not found application in other technologies, to produce alternative multi-component fuel which structure meets environmental and energy requirement for local heating systems. In addition, the implementation of such technology will make it possible to reduce power consumption of enterprises of various kinds that consume fuel and will also increase the share of local fuels in the energy balance of a particular region.
The analysis of possible variants of reconstruction of the power equipment is fulfilled and the conclusion concerning the prospects of such work with the use of composite materials is reached. The data on the technical characteristics of composite repair materials for various purposes are presented, the results of repairs of power equipment, in particular the technology for the recovery of the boarding surfaces of the diffuser rings and protection of the pumps D1250 casings are provided. The technology of the recovery pneumatic cylinder, hydraulic cylinder rod, as well as the unique technology of restoration of working surfaces of the impeller vanes of transfer pump, that had been destroyed by corrosion in conjunction with the cavitation processes and were considered as not restorable is described. The restored impeller was in operation during a year and only thereafter it was removed for restoration. Another composite material discussed in the article – diagum – makes it possible to perform a series of repairs associated with restoration of the rubber-covered surfaces of pump casings as well as with restoration of various surfaces of the conveyor belts. Taking the excellent adhesive properties of this composite into account, restoration of worn stainless steel sieve screens to remove abrasive material was fulfilled with the aid of it. The restoration was accomplished via the use of the conveyor belt which application time had expired, that was glued to a metal sieve with diagum. The use of the composites is economically justified, because the application of them in repairs reduces, firstly, terms of restoration work and, secondly, the price of repairs. Third, equipment that was damaged beyond repair is being commissioned by the use of the mentioned composites.
A problem of an increase of the power of turbine by improving heat transfer in condensers of steam turbines is considered in the article as a topical one. The analysis of contamination of the internal surfaces of cooling tubes and of the influence of pollution on the process of heat transfer in turbine condensers has been fulfilled. The existing method of cleaning of condenser tubes with the use of porous elastic balls of sponge rubber that is implemented on a number of large thermal power plants and state region power plants of the Republic of Belarus is examined. In the operation of the ball cleaning system a significant drawback has been revealed, viz. a low efficiency of this method due to the failure to comply with preparation the system of circulating water for operation. Also, a certain imperfection of ball cleaning system technology has been determined. One of the prerequisites for the effective functioning of the ball cleaning system is a certain degree of purity of the pipe system of the condenser, characterized by the coefficient of purity. To determine the effectiveness of ball cleaning system a series of experiments on the launching of porous rubber balls in the pipe system of the main and the embedded bunches of the T-250/300-240 UTMZ turbine has been produced. Immediately before the experiments hydraulic cleaning of the tubes of the condenser by a high-pressure installation were carried out. During the experiments, records of the number of downloaded porous rubber balls, of the number of rubber balls captured in a loading chamber, and of the number of rubber balls that remained in a calibration device were kept. A large proportion of default of the balls caused by the presence of residues of the carbonate sediments, that obstruct the movement of porous rubber balls in the tubes of the condenser, was determined. The presence of carbonate deposits in the tubes of the condenser indicates a lack of effectiveness of antiscale treatment of circulating water and of hydraulic method of cleaning tubes of the condenser.
Ambient temperature in the central part of Vietnam in summer can reach 32–35°C; in some places it can be more than 42°C. Hot climate strongly affects the animal organism alongside with the animal weight reduction and reduction the quantity of egg-laying in poultry. Therefore, air conditioning in livestock buildings is necessary. There are several ways to cool the temperature in such buildings, and each one has its own advantages and disadvantages. We propose to use underground water at the temperature of 24–25°C for this purpose. One of the methods of cooling sheds for livestock is sprinkler irrigation of water on the roof. For calculating the amount of heat, removed from the indoor air in the shed to the cooling water, in the first approximation specialists believe in some cases that an appropriate amount of heat being removed is determined mainly by heat transfer from the air inside the shed to the cooling water through the surface of the roof, represented by the lower part of the wave that form the surface of a metal tile, neglecting the influence of heat conduction on top of the wave of the tile surface. Consequentially, such a simplification leads to possible errors. Therefore, the authors solved the problem of cooling shed by irrigation of water on the roof by an analytical method. Specifically, we solved the problem of heat conductivity of the fin of the finite length of constant cross section, wherein different sides of the fin are conjugate with different environments. Additionally, the calculation considered the effect of solar radiation. For this purpose, the authors have created a heat balance equation at steady state for any infinitesimal element of the fin, and solved the differential equation afterwards. The authors applied the results for calculating practical problem of ground water irrigation of a roof of a livestock shed made of metal areas tiles.
ISSN 2414-0341 (Online)