Preview

ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations

Advanced search
No 4 (2015)
View or download the full issue PDF (Russian)

ELECTRICAL POWER ENGINEERING

5-12 834
Abstract

Most techniques of the fault location based on the one-side measurement of the emergency mode characteristics use the short-circuit steady-regime parameters in the fundamental mode frequency. This approach compels to seek additional devices for tuning out the loadings of transformer-substations. Besides, it is susceptible to the nonlinearity effect of closed-circuit arc in the fault location which significantly reduces the accuracy of the remote location of the failure.

For estimating the distance to the location of interphase failure on the aerial distributive transmission lines the article proposes a new technique employing the harmonic components of the operating emergency parameters. The algorithm of the present method realization includes: taking down oscillograms of the emergency-mode parameter values (e. g. in doublephase failure – the short-circuit current, the linear voltage between the faulty phases) with necessary discretization interval; expansion of the operating emergency parameters in a Fourier series (realized with a quick Fourier expansion algorithm); estimating the distance to the fault location by the analytical expression; performing the statistical analysis of a row of distance values and finding the most probable distance to the fault location.

For effectiveness investigation of the proposed method of trapping harmonic components the paper considers a 10 kV distributive electrical grid feeding nine transformer substations. The authors performed calculation of normal and emergency modes utilizing computer program MatLab in dynamic simulating environment Simulink. The arc is represented by a block describing the linearized dynamic volt-ampere characteristic of the arc. The built characteristic curves demonstrate dependence of the fault-location distance value from the frequency at which this value is obtained and the number if its reiterations. Based on the calculations, the authors establish that the accuracy of the distance determination to the interphase fault location depends on the oscillograph-discretization interval, the duration and the record-start delay of the operating emergency parameters. 

13-24 2042
Abstract

Magnetic circuitry computation is one of the central stages of designing a synchronous motor with incorporated magnets, which can be performed by means of a simplified method of the magnetic-circuits equivalent modeling. The article studies the magnetic circuit of the motor with the rotor-incorporated magnets, which includes four sectors: constant magnets with the field pole extension made of magnetically soft steel, magniflux dispersion sections containing air barriers and steel bridges; the air gap; the stator grooves, cogs and the frame yoke. The authors introduce an equivalent model of the magnetic circuit. High-energy magnets with a linear demagnetization curve are employed in the capacity of constant magnets. Two magnets create the magnetic flux for one pole. The decline of magnetic potential in the steel of the pole is negligible consequent on the admission that the poles magnetic inductivity µ = ∞. The rotor design provides for the air barriers and the steel bridges that close leakage flux. The induction-permeability curve linearization serves for the bridges magnetic saturation accountability and presents a polygonal line consisting of two linear sections. The estimation of the magnet circuit section including the cogs and the frame yoke is executed with account of the steel saturation, their magnetic conductivities thereat being dependent on the saturation rate. Relying on the equivalent model of the magnetic circuit, the authors deduce a system of two equations written from the first and the second Kirchhoff laws of the magnetic circuits. These equations allow solving two problems: specifying dimensions of the magnets by the preset value of the magnetic flow in the clearance and determining the clearance magnetic flow at the preset motor rotor-and-stator design.

24-30 3614
Abstract

Electrical power cables with Cross-Linked Polyethylene Insulation (XLPE-insulation) are currently utilized in projects of the electric-power supply systems of modern facilities. However, the higher costs, the incomplete design, installation and maintenance normativetechnical basis as well as certain constructional features of the XLPE-insulated cable lines hinder their large-scale implementation.

The cables with XLPE insulation are mostly produced in a single-conductor core version being provided with a composite copper shield whose cross-section may vary while the electric conductor cross-section remains uniform. Earthing the cable shields on both sides causes the flow of electricity in them. The course of operational service of the XLPE-insulated cable lines revealed the following fact – the currents induced in the cable shields can run up to the levels commeasurable with those in the conductor-cores themselves. That, in its turn, leads to electrical safety-level reduction, cable lines failure, and economic losses. The currents induced in the shields may occur both in symmetric (normal and emergency) and asymmetric operating modes of the power grid with values of the induced currents reaching 80 % of the conducting core currents. Many factors affect the level of the current induced in the shield: the midpoint conductor modes, the values of the core longitudinal currents in the normal and emergency operating modes, failure mode, the cross-section area of the shield, the cables mutual disposition, and the distance between them.

The paper claims experimental existence conformation of the cable-shield current induced by that in the conductor-core and demonstrates its measured value. The author establishes that induction of dangerous currents in the cable shields demands elaboration of measures on reducing their level.

НEAT POWER ENGINEERING

31-43 1945
Abstract

The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation decision. 

44-53 2825
Abstract

The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.

The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure). The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

54-63 811
Abstract

The heat fluxes impact on the road-dressing concrete surfacing under different regions climatic conditions of the construction and maintenance dramatically degrades their solidity, corroding-, shiftingand frost-resistance, and ultimately – the service durability. The source of deformation processes is the character of the gradient temperature fields in the road dressing materials developing with both protracted (static) and short run (dynamic) heat-and-mass impacts that forward destruction of the pavement surface layers being in contact with free air. In addition, pulsating hydrodynamic pressures appear in the pores of moisture-laden pavement as a result of the vehicular traffic that foster material structure disruption of the surface layers leading to irreversible deformation incipiency (cracks etc.). 

The authors report of developing a С++ computer program for temperature and gradient fields engineering evaluations of the road dressings made of materials with various surfacing and free-air thermophysical characteristics in line with boundary conditions of the 3rd kind for semi-bounded body. The paper presents the evaluation results in form of graphical curves of the temperature allocation along the surfacing thickness as function of its initial temperature and thermophysical characteristics of the concrete. 

63-74 1889
Abstract

The paper demonstrates the fact that in valuating the actual heat efficiency from utilizing the vortical heat-release intensification it is necessary to account for the increase of heatreleasing area of the tube with the corresponding lacunae (hollows, lunules). It may vary from 4 to 280 % as a function of their geometrical parameters which causes heat-release increasing with its simultaneous growth from vortex formation in the boundary-layer flow by the swirls generated by lunule turbulizers. For the tube of axial flow-around with hollows applied on the outer surface the vortex intensification enhances the thermal effectiveness up to 1,39 times, and in the case of the transversal flow-around tube banks with lunuled tube outer surface it does not exceed 29 % at Re = 5000. With Re number growing to 14000 the energy effect tangibly declines to 6 %.

The thermal effectiveness of the vortex intensification with spherical lunules on the tube inside surface and the air moving inside does not exceed 13 % in the interval Re = (1−2) ⋅ 104 , which is distinctive for air the preheaters of steam-boilers. However, a greater energy effect (up to 33 %) for the axial flowing is attained from emerging saliences on the tube inside surface beneath the spherical lacunae on the outside. The authors establish that employing discrete roughness in the form of transverse circular saliences (diaphragms) allows attaining much greater heat-emission intensification (up to 70 %) in the interval of Re = (10−100) ⋅ 103 as compared to the smooth tube. The paper shows that physical principles of the heat-emission vortex intensification by way of lunuling the round tubular surfaces differentiate from those applying artificial limited roughness in the form of pyramid frusta on the tube outside surfaces flowed around by the transverse flow. 

74-85 1073
Abstract

The authors elaborate the economical efficiency evaluation technique that could be universal and applied for technical-and-economic feasibility study of the ball-cleaning system installation on the steam turbines of the electric power plants. Besides the effect from reducing the exhaust steam pressure in the condenser by means of the ball-cleaning system implementation, this technique also accounts for the effect of lowering the condenser hydraulic pressure.

The article refers to the practical results of the ball-cleaning system introduction on the steam turbines of Gomel CHP-2. As a result of regular application of the ball-cleaning system the temperature difference of the condensers of all blocks Т-180/210-130-1 confined into the regulatory values and the cleanness coefficient of all three turbine units reached 0,85. The authors consider the working results, implementation experience of the ball-cleaning system at Gomel CHP-2 and its efficiency evaluation technique to be worth disseminating when introducing the analogous systems at the plants of Belarusian power network.

The authors suggest measures on the condenser automatic-cleaning system improvement with the turbine mathematical-simulation model employment that will make it possible to optimize the condenser cleaning regimes and to increase the ball-cleaning system effectiveness with the condenser cleanness coefficient growing up to 0,90–0,92.

86-92 1155
Abstract

The author represents the method of creating composite 3D-models employing technology of geographical information systems for environmental impact assessment of projected, constructed and operating energy facilities. The paper describes the techniques of applying bundled software ArcView with add-on modules ImageWarp and RASTRProfi for alignment of multiscale bit-mapped and direct-beam three-dimensional models with the object of evaluating ecological risks for diverse territories.

The article evaluates the environmental impact of a thermal power plant near the city of Rasht (industrial area Saravan) and demonstrates analysis of the territorial distribution of the soil contamination with varied pollutants at different wind structures. The paper demonstrates the method of building composite 3D-models applied for assessment of presumable incidents with radioactivity discharge at the nuclear power plant in Halileh, 20 km from the city of Bushehr. By analyzing the wind diagram in the territory being explored and determining the predominant wind directions in different periods, it is possible by way of employing this method to distinguish the territories and the objects with most unfavorable prognosis. This enables rendering a prompt decision on the measures minimizing unfavorable impact on the population and environment.

Altering the point of topographical survey while synchronizing the scales, the researcher can place the designed project within any territory and analyze the necessary parameters for each variant.

The author considers the presented in such a manner technique worth productive implementing while analyzing environmental impact of both operating and projected industrial facilities (industrial and agricultural enterprises, thermal and nuclear electric-power plants etc.). 



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)