Preview

ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations

Advanced search
No 4 (2014)

ELECTRICAL POWER ENGINEERING

5-14 956
Abstract

Reliability Analysis of nonrestorable redundant power Systems of industrial plants and other consumers of electric energy was carried out. The main attention was paid to numbers failures influence, caused by failures of all elements of System due to one general reason. Noted the main possible reasons of common failures formation. Two main indicators of reliability of non-restorable systems are considered: average time of no-failure operation and mean probability of no-failure operation. Modeling of failures were carried out by mean of division of investigated system into two in-series connected subsystems, one of them indicated independent failures, but the other indicated common failures. Due to joined modeling of single and common failures resulting intensity of failures is the amount incompatible components: intensity statistically independent failures and intensity of common failures of elements and system in total.

It is shown the influence of common failures of elements on average time of no-failure operation of system. There is built the scale of preference of systems according to criterion of  average time maximum of no-failure operation, depending on portion of common failures. It is noticed that such common failures don’t influence on the scale of preference, but  change intervals of time, determining the moments of systems failures and excepting them from the number of comparators. There were discussed two problems  of conditionally optimization of  systems’  reservation choice, taking into account their reliability and cost. The first problem is solved due to criterion of minimum cost of system providing mean probability of no-failure operation, the second problem is solved due to criterion of maximum of mean probability of no-failure operation with cost limitation of system.
15-22 841
Abstract

This article reflects algorithmization of search methods of effective replacement of consumer transformers in distributed electrical networks. As any electrical equipment of power systems, power transformers have their own limited service duration, which is determined by natural processes of materials degradation and also by unexpected wear under different conditions of overload and overvoltage. According to the standards, adapted by in the Republic of Belarus, rated service life of power transformers is 25 years. But it can be situations that transformers should be better changed till this time – economically efficient. The possibility of such replacement is considered in order to increase efficiency of electrical network operation connected with its physical wear and aging.

In this article the faults of early developed mathematical models of transformers replacement were discussed. Early such worked out transformers were not used. But in practice they can be replaced in one substation but they can be successfully used  in other substations .Especially if there are limits of financial resources and the replacement needs more detail technical and economical basis.

During the research the authors developed the efficient algorithm for determining of optimal location of transformers at substations of distributed electrical networks, based on search of the best solution from all sets of displacement in oriented graph. Suggested algorithm allows considerably reduce design time of optimal placement of transformers using a set of simplifications. The result of algorithm’s work is series displacement of transformers in networks, which allow obtain a great economic effect in comparison with replacement of single transformer.

23-30 679
Abstract

The article describes a process of synthesis and qualitative assessment of the harmonic composition of voltages of multiple and single PWM pulses in time regulation, being, along with amplitude, frequency and phase method, one of control methods of an asynchronous motor. The main point of time regulation is that a pause after any two single PWM pulses with different polarity or after any two groups of multiple PWM pulses with different polarity changes during a process of regulation. Feature of time regulation is that a motor has fast response in the range of small-signal of control and good linearity of speed-torque characteristics in the whole control range. Analytical expressions of parameters of PWM pulses ai and ti are obtained which allow to simplify considerably a process of formation and implementation of time regulation using tabular or indexed-tabular methods. These expressions allow not only to define voltage amplitude of  harmonic but also to perform qualitative assessment of harmonic composition of output voltages at time regulation. It is specified that harmonic frequencies wi = w0/q change in inverse proportion to magnitude of parameter q during a process of regulation and there is a replacement of a fundamental frequency by frequencies of higher harmonics.

The offered approach allows to synthesize voltage of uniform single and multiple PWM pulses and to perform their comparative and qualitative analysis and the obtained expressions can be used at modeling of AC motor work. Voltage of multiple PWM pulses which is formed using stepped reference voltage with even quantity of steps in a half period and a pause on a zero level has the best parameters by criterion of a minimum of harmonic components and a maximum of a factor of anharmonicity Kнс at time regulation.

30-41 1883
Abstract

At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application  with drive and without it.

These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.

НEAT POWER ENGINEERING

42-55 879
Abstract

A computer modeling process of three-dimensional forced convection proceeding from computation of thermodynamic parameters of pneumo basic buildings (pneumo supported structures) is presented. The mathematical model of numerical computation method of temperature and velocity fields, pressure profile in the object is developed using the package Solid works and is provided by grid methods on specified software. Special Navier–Stokes, Clapeyron–Mendeleev, continuity and thermal-conductivity equations are used to calculate parameters in the building with four supply and exhaust channels. Differential equations are presented by algebraic equation systems, initial-boundary conditions are changed by differential conditions for mesh functions and their solutions are performed by algebraic operations. In this article the following is demonstrated: in pneumo basic buildings convective and heat flows are identical structures near the surfaces in unlimited space, but in single-multiply shells (envelopes)circulation lines take place, geometrical sizes of which depend on thermal-physical characteristics of gas(air)in envelopes, radiation reaction with heated surfaces of envelopes with  sphere, earth surface, neighboring buildings. Natural surveys of pneumo-basic buildings of different purposes were carried out in Minsk, in different cities of Belarus and Russia, including temperature fields of external and internal surfaces of air envelopes, relative humidity, thermal (heat)flows, radiation characteristics and others.

The results of research work are illustrated with diagrams of temperature, velocity, density and pressure dependent on coordinates and time.

56-62 1777
Abstract

The heat dissipation on the lateral surface of the cyclone chamber working volume with asymmetrical input and output of gases is considered in the present paper in contrast to the previously executed [1–10]. The relative values of input gas flow and the relative diameters of the outlet are different in each of the halves of the working volume. The heat dissipation by convection to the swirling airflow was studied by the method of variation of the aggregate state of the heating agent – water vapor slightly superheated (at 2–3 °С) condensation. Collecting the condensate produced from the work site through a water lock, providing maintaining of constant pressure in the calorimeter. The quantity of heat transmitted during the experiment was determined by the amount of collected condensate.

In the experiments on the camera with two-sided asymmetric output relative gas outlet diameter on one side of the camera varied Relative diameter of the outlet on the other hand remained constant. In the experiences on the camera with the bilateral asymmetrical conditions for the introduction of gases the asymmetry of the introduction of flow was created due to a change in the relative entrance area whoo remained constant. Local heat transfer coefficient was determined for different values dimensionless longitudinal coordinate coinciding with the axis of the chamber, directed toward the outlet, measured from the middle section of the working volume. Еquations for calculation of heat transfer coefficients on the lateral surface of the howling cyclone chambers with unbalanced input and output gases, оbtained in this paper, give the satisfactory agreement of the calculated and experimental data that allows to recommend to their practical application.

63-74 967
Abstract

The work of regulator in general three-impulse automatic control system of water level in drum of boiler doesn’t supply quality of internal and external disturbance attack (presentation of regulation mistakes). That is why it is needed to improve. Different methods of proportional plus reset controller regulation of three-phase automatic feed control system are considered. There were suggested new methods to improve the quality of regulation of water level in boilers. Here the step system of automatic regulation was determined, on the base of transfer function.

It is noticed that optimal transient processes supply calculation of numerical value of transmission factor of regulator at g =2,618, it is more then was recommended, but statistic mistakes remain. The transient simulation method in fast-time scale is recommended, this allow to determine early the value of statistic mistake of regulation by disturbances of reheated steam consumption and properly change the task to compensating device of step automatic control system. And numerical value of time constant criteria  should be calculated on the base of numbers of golden section(Phi), taking into account the definite time constant of lead section and time-lag, time-lag on controlled influence channel, and also taking into account maximum value of controlled influence. This method allow to reduce in two times the total time of regulation, to decrease absolute mistake of regulation in three times, and maximum value of regulation influence by feedwater in 1,7 times.

75-82 780
Abstract

Today it is required to use secondary energy resources (STR), which we have in gas-transport system of the country, more efficiently. In this system (STR) smoke gases of gas transforming aggregates with turbogas drive installations are presented primarily.

For using STR of turbogas drives it is necessary to forecast heat exchange equipment installation, this causes the growth of aerodynamic resistance of exhaust channel. This influences on all plant’s work. It was experimentally proved that the usage of utilized equipment influences upon increasing  of power efficiency. For this reason the perturbation method was used, which allow to determine rate of influence. Convenience of this method is that the solution can be obtained in the form of evident analytical dependence and it does not depend on formulated problem, number of variable and definite relations between them.

Using the perturbation method influence efficiency was obtained, which influences on exhaust channel resistance changes and as a result changes power efficiency and in the whole plant’s efficiency. Besides, in this article the dependence of influence efficiency from stating parameters of cycle was presented in graphs: temperature of burning products before turbine and air compression.

83-94 3809
Abstract

The article presents a comprehensive low-waste technology is the use of local fuels, which can be used in the technology of some porous building materials. Also provides new methods of preparation of porous building materials based on aggloporite using local fuels and waste energy on the basis of milled peat, fuel briquettes and wood chips allow to replace expensive imported components that comprise the raw mixtures (coal, anthracite).

On the basis of mathematical modeling of cooling in reheat furnaces pusher drive developed a method of engineering calculation mode batch hardening in agglomeration. Submitted constructive solution for the development of the cooling charge with thermophysical rational justification cooling modes. A study of the temperature distribution within the charge depending on the different speeds of the belt sintering machine, and hence on the cooling time.

The characteristics of the raw material deposits "Fanipol" and the optimal composition of the charge which includes loam, coal, milled peat. In industrial research obtained aggloporite this formulation has shown positive results in strength and density. Established that by decreasing the particle size of the fuel increases the redox potential of the combustion products, which reduces the height of the oxidizing zone and the speed of the sintering raw mix. These processes increase the productivity of sinter machine.

Technology is implemented on the "Minsk factory of building materials". The tests analyzed production technology porous construction materials using milled peat with the addition of sawdust. The study results recommend further use of sapropel, which cost significantly lower raw material mixture of submissions and in their physical and mechanical properties much closer to the properties of milled peat.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)