Kara-Bogaz-Gol Bay as a “Solar Pond” and Its Energy Characteristics
https://doi.org/10.21122/1029-7448-2025-68-6-551-564
Abstract
The article considers the solar energy resources of the Kara-Bogaz-Gol Bay as a “solar pond”. Using the developed physical and mathematical methods, the thermal energy potentials оf the accumulation of salt deposits in the bay were determined for the creation and use of energy technologies in industrial sectors. Thermal energy characteristics for the introduction of various solar energy storage technologies were assessed; according to preliminary calculations, the effi ciency of a solar reservoir is 1.14 % in winter and 1.46 % in summer. The solar energy potential of conversion into thermal energy varies from 40 to 70 % depending on the season of the year. The average temperature on the salt surface of the reservoir bottom in summer ranges from 55.04 to 79.8 °C, in winter from 20.0 to 25.6 °C. The obtained scientific results can be used in the deve- lopment of design and estimate documentation, preparation of feasibility studies for the creation of various solar energy technological complexes in the Caspian region, which will contribute to strengthening energy security, development of energy systems and production of autonomous technological installations and equipment based on solar energy, which will reduce the energy consumption of fossil fuels and improve the environmental situation in the Kara-Bogaz-Gol region.
About the Authors
A. M. PenjiyevTurkmenistan
Address for correspondence:
Penjiyev Ahmet M.
Turkmen State Institute
of Architecture and Construction
136, B. Annanova str.,
744001, Ashgabat,
Turkmenistan
Tel.: +7 (993) 65-80-17-54
B. M. Mamedov
Turkmenistan
Ashgabat
References
1. Berdimuhamedov G. M. (2018) Turkmenistan on the Way to Achieving Sustainable Develop- ment Goals. Ashgabat, Turkmen State Publishing Service. 468 (in Russian).
2. Berdimuhamedov G. M. (2022) Electric Power Capacity of Turkmenistan. Ashgabat, Turkmen State Publishing Service. 130 (in Russian).
3. Penjiyev A. M. (2023) Eco-Energy Resources of Renewable Energy Sources. Moscow, Ru- sains Publ. 400 (in Russian).
4. Sednin A. V., Dyussenov K. M. (2024) Development of Hybrid District Heating Systems. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Asso- ciations, 67 (2), 173–188. https://doi.org/10.21122/1029-7448-2024-67-2-173-188 (in Russian).
5. Saitov S. R., Chichirova N. D., Filimonova A. A., Karnitsky N. B. (2024) Forecas- ting Peak Hours for Energy Consumption in Regional Power Systems. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Pro- ceedings of CIS Higher Education Institutions and Power Engineering Associations, 67 (1), 78–91. https://doi.org/10.21122/1029-7448-2024-67-1-78-91 (in Russian).
6. Pysmenna U. Ye., Trypolska G. S. (2020) Sustainable Energy Transitions: Overcoming Nega- tive Externalities. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Po- wer Engineering Associations, 63 (4), 312–327. https://doi.org/10.21122/1029-7448-2020-63-4-312-327.
7. Vissarionov V. I., Deryugina G. V., Kuznetsova V. A., Malinin N. K. (2008) Solar Energy. Moscow, Publishing House of Moscow Power Engineering Institute. 276 (in Russian).
8. Duffie J. A., Beckman W. A. (1974) Solar Engineering of Thermal Processes. John Wiley & Sons, Inc. Published. 429.
9. Dubkovsky V., Denisova A. (2000) Use of Solar Ponds in Combined Power Plants.
10. Ekotekhnologii i Resursosberezhenie = Ecotechnologies and Resource Saving, (2), 11–13.
11. Strebkov D. S. (2019) Fundamentals of Solar Energy. Moscow, Publishing House SAM Polig- raphist Publ. 326 (in Russian).
12. Kara-Bogaz-Gol: How Everyone Was Sure That This Lake Was Killing the Caspian Sea // Entsi- klopediya Geografa [Encyclopedia of the Geographer]. URL: https://enciclopediya-geografa. ru/puteshestviya/6016-kara-bogaz-gol-kak-vse-byli-uvereny-chto-imenno-eto-ozero-ubivaet- kaspiyskoe-more.html https://enciclopediya-geografa.ru/puteshestviya/6016-kara-bogaz-gol-kak-vse-byli-uvereny-chto-imenno-eto-ozero-ubivaet-kaspiyskoe-more.html (in Russian).
13. Umarov Yu. U., Teslenko L. N., Eliseev V. N., Umarov G. Ya. (1973) Some Results of Theo- retical and Experimental Study of the Thermal Regime of a Salt Solar Pool. Geliotekhnika = Applied Solar Energy, (2), 37–42 (in Russian).
14. Popel O. S., Fried S. E., Shelkov E. M. [et al.] (1983) Analysis of Thermal Characteristics and Convective Stability of a Solar Pond. Proceedings of the European Symposium on Solar Ener- gy. Varna, NRB, September 13–17, 27 (in Russian).
15. Popel O. S. (1988) Study of Heat Supply Systems Based on Solar Ponds [Dissertation]. Mos- cow, Institute for High Temperatures of Academy of Sciences (in Russian).
16. Popel O. S., Sonina N. M., Yaskin L. A., Zenkova I. A. (1992) Prospects for the Construction of a Pilot Solar Pond in Crimea. Energeticheskoe Stroiyelstvo [Energy Construction], (2), 9–14 (in Russian).
17. Kosarev A. N., Kostianoy A. G., Zonn I. S. (2008) Kara-Bogaz-Gol Bay: Physical and Chemical Evolution. Aquatic Geochemistry, 15(1–2), 223–236. https://doi.org/10.1007/s10498-008-9054-z.
18. Dickinson W. C., Clark A. F., Iantuono A. (1976) Shallow Solar Ponds for Industrial Process Heat: the ERDA–SOHIO project (No. UCRL-78288; CONF-760821-4). California Univ., Livermore (USA). Lawrence Livermore Lab.
19. Kudish A. I., Wolf D. (1978) A compact shallow solar pond hot water heater. Solar Energy, 21 (4), 317–322. https://doi.org/10.1016/0038-092x(78)90008-7.
20. Sodha M. S., Nayak J. K., Kaushik S. C. (1980) Physics of shallow solar pond water heater. Interna- tional Journal of Energy Research, 4 (4), 323–337. https://doi.org/10.1002/er.4440040404.
21. Sodha M. S., Tiwari G. N., Nayak J. K. (1981) Shallow solar pond water heater: An analytical study. Energy Conversion and Management, 21 (2), 137–139. https://doi.org/10.1016/0196-8904(81)90035-2.
22. Merriam M. F. (1983) Electricity Generation from Non-Convective Solar Ponds in California: Report of University Wide energy Research Group (UER 109). University of California, Uni- versitywide Energy Research Group (in Russian).
23. Abou-Chakra F. N. (1992) Analyses of the Sources, Factors and Treatment Methods Affecting Turbidity at the El Paso Solar Pond: Theses Masters Science. The University of Texas at El Paso.
24. Popel O. S. (1987) A Generalized Stationary Model for Solar Pond. Proc. of ISES Solar World Congress. Humburg, ERG, 243–247.
25. Popel O. S. (1988) Solar Ponds: the State of the Art of R&D Efforts. Development and Use of Effective Solar Systems: H-1SES Workshop. Budapest, Hungary, 2–3 June 1988.
26. Popel O. S., Shpilrain E. E., Frid S. E. The Models of Processes for Converting the Solar Energy in Solar Ponds and Their Practical Utilization. North Sun’88. Solar Energy at High Latitudes: Proc. of the Int. Conf. Borlange, Sweden, 29–31 August, 1988.
27. Rybakova L. E. (ed.) (1985) Use of Solar Energy. Ashgabat, Ylym Publ. 280 (in Russian).
28. Strebkov D. S., Penjiyev A. M., Mamedsakhatov B. D. (2012) Development of solar energy in Turkmenistan. Moscow, State Scientific Institution “All-Russian Research Institute for Electri- fication of Agriculture”. 498 (in Russian).
29. Penjiyev A. M., Orazov P. O. (2025) Solar Energy Resource Potential of the Garabogazköl Gulf in the Caspian Sea. Geography and Natural Resources, 46 (2), 212–219. https://doi.org/10.1134/s1875372825700234.
30. Penjiyev A. M. (2022) Wave Energy Resources of the Caspian Sea on the Coast of Turkmeni- stan. Applied Solar Energy, 58 (2), 306–310. https://doi.org/10.3103/s0003701x22020141.
31. Bayramov R. B., Rybakova L. E., Penjiyev A. M. (1985) Mathematical Model for Describing the Thermal Regime of a Trench-Type Solar Greenhouse. Geliotekhnika = Applied Solar Energy, (4), 41–44 (in Russian).
32. Turkmen Republican Department of Hydrometeorology (1989) Scientific and Applied Refe- rence Book on the Climate of the USSR. Series 3. Long-term data. Issue 30: Turkmen SSR. Leningrad, Gidrometeoizdat Publ. 502 (in Russian).
33. Penjiyev A. M. (2000) Agricultural Technology for Growing Melon Trees (Carica Papaya L.) in Protected Soil Conditions in Turkmenistan [Dissertation]. Moscow. 54 (in Russian).
34. Penjiyev A. M. (2010) Mathematical Modeling of Microclimate in a Solar Trench-Type Green- house. Alternativnaya Energetika i Ekologiya = Alternative Energy and Ecology, (7), 88–96 (in Russian).
35. Penjiyev A. M. (2022) Scientific Substantiation of the Use of Energy Technologies Based on Renewable Energy Sources in Turkmenistan [Dissertation]. Ashgabat. 42 (in Russian).
Review
For citations:
Penjiyev A.M., Mamedov B.M. Kara-Bogaz-Gol Bay as a “Solar Pond” and Its Energy Characteristics. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2025;68(6):551-564. (In Russ.) https://doi.org/10.21122/1029-7448-2025-68-6-551-564






























