Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск

Онлайн-идентификация электромагнитных параметров асинхронного двигателя

https://doi.org/10.21122/1029-7448-2020-63-5-423-440

Аннотация

Несоответствие настроек системы  управления  фактическим  значениям  параметров частотно-регулируемого  асинхронного  электропривода  может  иногда  приводить  к  полной 

неработоспособности частотного электропривода, к существенному снижению динамических показателей качества. Такие параметры, как активное сопротивление и индуктивность ротора, индуктивность цепи намагничивания, недоступны для непосредственного измерения. При приемо-сдаточных испытаниях они не определяются, а величины, приводимые в каталогах и справочниках, являются расчетными и могут существенно отличаться от реальных значений конкретной машины. Несмотря на постоянные усилия исследователей, задача идентификации электромагнитных параметров схемы замещения асинхронного двигателя остается важной и актуальной. Авторы статьи разработали метод онлайн-идентификации электромагнитных параметров асинхронного двигателя, что позволит реализовать точную настройку регуляторов системы частотного управления при эксплуатационных изменениях характеристик приводного двигателя. Выполнен анализ установившегося режима работы асинхронного двигателя без использования Т-образной схемы его замещения. Предложен подход, опирающийся на уравнения асинхронного двигателя в трехфазной неподвижной системе координат, полученные на основе теории обобщенного электромеханического преобразователя. С учетом аналитических преобразований этих формул получена система нелинейных алгебраических уравнений четвертого порядка, решение которой позволяет определить активное сопротивление ротора, сопротивление рассеивания и главную взаимную индуктивность асинхронного двигателя в предположении, что активное сопротивление статора известно. Произведена верификация предлагаемого метода. На основании данных установившегося режима работы асинхронного двигателя типа 4А250М2УЗ выполнена идентификация его электромагнитных параметров, исследовано влияние начального приближения на точность полученных результатов, которые подтверждают работоспособность рассматриваемого метода идентификации.

Об авторах

В. А. Тытюк
Криворожский национальный университет
Украина
Кривой Рог


М. Л. Барановская
Криворожский национальный университет
Украина
Кривой Рог


А. П. Черный
Кременчугский национальный университет имени Михаила Остроградского
Украина
Кременчуг


Е. В. Бурдильная
Кременчугский национальный университет имени Михаила Остроградского
Украина

Адрес для переписки: Бурдильная Евгения Владимировна – Кременчугский национальный университет имени Михаила Остроградского, ул. Первомайская, 20,  39600, г. Кременчуг, Украина.  Тел.: +380 5366 3-11-47

evburdilnaya@gmail.com



В. В. Кузнецов
Национальная металлургическая академия Украины
Украина
Днепр


К. Н. Богатырев
Полтавский горно-обогатительный комбинат
Украина
Горишние Плавни


Список литературы

1. IEEE 12–1996 – IEEE Standard Test Procedure for Polyphase Induction Motors and Generators. Available at: https://standards.ieee.org/standard/112-1996.html.

2. Yu-hua-Wang, Birdwell-JD (1982) Dynamic Identification of the Model Parameters for an Induction Motor. Conference Proceedings of IEEE SOUTHEASTCON.

3. Goldberg D. E., Potvin A. F. (1994) Genetic Algorithms: Implementation Based on GAs From. The MathWorks.

4. Huang K. S., Kent W., Wu Q. H., Turner D. R. (1999) Parameter Identification of an Induction Machine Using a Genetic Algorithms. Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design. https://doi.org/10.1109/cacsd.1999.808700.

5. Moons C., De Moor B. (1995) Parameter Identification of Induction Motor Drives. Automatica, 31 (8), 1137–1147. https://doi.org/10.1016/0005-1098(95)00016-P.

6. Moon S., Keyhani A., Pillutla S. (1999) Nonlinear Neural – Network Modeling of an Induction Machine. IEEE Transactions on Control Systems Technology, 7 (2), 203–211. https://doi.org/10.1109/87.748146.

7. Buchholz O., Boeker J. (2018) Online-Identification of the Machine Parameters of an Induction Motor Drive. 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 860–867. https://doi.org/10.1109/isie.2018.8433852.

8. Sanchez I., Pillay P. (1994) Sensitivity Analysis of Induction Motor Parameters. Proceedings of SOUTHEASTCON '94. Miami, FL, USA, 50–54. https://doi.org/10.1109/SECON.1994.324263.

9. Laroussi K., Zelmat M. (2005) Fuzzy Adaptation of the PI Controller Parameters Applied for Induction Motor. Proceedings. IEEE SoutheastCon, 2005. https://doi.org/10.1109/SECON.20051423207.

10. Fountas N. A., Hatziargyriou N. D. (1994) Estimation of Induction Motor Parameters for Dynamic Analysis. Proceedings of MELECON '94. Mediterranean Electrotechnical Conference. Vol. 3. Antalya, Turkey, 1263–1266. https://doi.org/10.1109/MELCON.1994.380836.

11. Attaianese C., Damiano A., Gatto G., Marongiu I. (1998) A Perfetto Induction Motor Drive Parameters Identification. IEEE Transactions on Power Electronics, 13 (6), 1112–1122. https://doi.org/10.1109/63.728338.

12. Gastli A. (1999) Identification of Induction Motor Equivalent Circuit Parameters Using the Single-Phase Test. IEEE Transactions on Energy Conversion, 14 (1), 51–56. https://doi.org/10.1109/60.749147.

13. Shaw S. R., Leeb S. B. (1999) Identification of Induction Motor Parameters from Transient Stator Current Measurements. IEEE Transactions on Industrial Electronics, 46 (1), 139–149. https://doi.org/10.1109/41.744405.

14. Košťál T. (2017) Induction Machine Parameters Identification Method Suitable for Self-Commissioning. 2017 XXVI International Scientific Conference Electronics (ET). Sozopol, 1–4. https://doi.org/10.1109/ET.2017.8124357.

15. Lee S., Yoo A., Lee H. J., Yoon Y. D., Han B. M. (2017) Identification of Induction Motor Parameters at Standstill Based on Integral Calculation. IEEE Transactions on Industry Applications, 53 (3), 2130–2139. https://doi.org/10.1109/tia.2017.2650141.

16. Sukhapap S., Sangwongwanich S. (2002) Auto Tuning of Parameters and Magnetization Curve of an Induction Motor at Standstill. IEEE ICIT '02. Proc. IEEE International Conference on Industrial Technology, 101–106. https://doi.org/10.1109/icit.2002.1189871.

17. Kwon S., Lee J. H., Moon S. H., Kwon B. K., Choi C. H., Seok J. K. (2009) Standstill Parameter Identification of Vector-Controlled Induction Motors Using the Frequency Characteristics of Rotor Bars. IEEE Transactions on Industry Applications, 45 (5), 1610–1618. https://doi.org/10.1109/TIA.2009.2027164.

18. He Y., Wang Y., Feng Y., Wang Z. (2012) Parameter Identification of an Induction Machine at Standstill Using Vector Constructing Method. IEEE Transactions Power Electronics, 27 (2), 905–915. https://doi.org/10.1109/tpel.2010.2089699.

19. Weili H., Weijian H., Lin L. (2007) Estimation of Stator Resistance and Temperature Measurement in Induction Motor Using Wavelet Network. 2007 Chinese Control Conference, 203–207. https://doi.org/10.1109/CHICC.2006.4347505.

20. Pons-Llinares J., Antonino-Daviu J. A., Riera-Guasp M., Pineda-Sanchez M., Climente-Alarcon V. (2011) Induction Motor Diagnosis Based on a Transient Current Analytic Wavelet Transform Via Frequency B-Splines. IEEE Transactions on Industrial Electronics, 58 (5), 1530–1544. https://doi.org/10.1109/TIE.2010.2081955.

21. Peresada S., Kovbasa S., Prystupa D., Lyshevski S. E. (2013) Identification of Induction Motor Parameters Adaptively Controlling Stator Currents. IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society. Vienna, 8476–8481. https://doi.org/10.1109/IECON.2013.6700555.

22. Babau I., Boldea I., Miller T. J. E., Muntean N. (2007) Complete Parameter Identification of Large Induction Machines from No-Load Acceleration-Deceleration Tests. IEEE Transactions on Industrial Electronics, 54 (4), 1962–1972. https://doi.org/10.1109/TIE.2007.895080.

23. Zagirnyak M. A., Bisikalo O., Chorna O., Chornyi O. (2018) Model of the Assessment of an Induction Motor Condition and Operation Life, Based on the Measurement of the External Magnetic Field. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 316–321. https://doi.org/10.1109/IEPS.2018.8559564.

24. Chorna O., Chornyi O., Tytiuk V. (2019) Identification of Changes in the Parameters of Induction Motors during Monitoring by Measuring the Induction of a Magnetic Field on the Stator Surface. Proceedings of the International Conference on Modern Electrical and Energy Systems, MEES 2019, 150–153. https://doi.org/10.1109/MEES.2019.8896554.

25. Krivonosov V. E. (2017) Diagnostic of the Insulation State of the Asynchronous Motor and the Power Supply Cable under Conditions of Local Compensation. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 60 (6), 536–543. https://doi.org/10.21122/1029-7448-2017-60-6-536-543 (in Russian).

26. Nuscheler R., Potoradi D. (1996) Problems and Failure Sources with the Parameter Identification of Asynchronous Machines and their Dependence on the Identification Method. Proceedings International Conference Electrical Machines, 130–135.

27. Thompson W. T. (1999) A Review of On-Line Condition Monitoring Techniques for Three Phase Squirrel Induction Motors ̵ Past Present and Future. Preceedings of IEEE SDEMPED International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 3–18.

28. Novash I. V., Romaniuk F. A., Rumiantsev Yu. V., Rumiantsev V. Yu. (2017) MatLab-Simulink Based Information Support for Digital Overcurrent Protection Test Sets. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energeti-ka. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 60 (4), 291–308. https://doi.org/10.21122/1029-7448-2017-60-4-291-308 (in Russian).

29. Kashyrskikh V. G. (2005) Dynamic Identification of Asynchronous Electric Motors. Keme-rovo, KuzSTU. 140 (in Russian).

30. Tytiuk V., Pozigun O., Chornyi O., Berdai A. (207) Identification of the Active Resistances of the Stator of an Induction Motor with Stator Windings Dissymmetry. Proceedings of the International Conference on Modern Electrical and Energy Systems, MEES, 48–51. https://doi.org/10.1109/MEES.2017.8248949.


Рецензия

Для цитирования:


Тытюк В.А., Барановская М.Л., Черный А.П., Бурдильная Е.В., Кузнецов В.В., Богатырев К.Н. Онлайн-идентификация электромагнитных параметров асинхронного двигателя. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2020;63(5):423-440. https://doi.org/10.21122/1029-7448-2020-63-5-423-440

For citation:


Tytiuk V.K., Baranovskaya M.L., Chorny O.P., Burdilnaya E.V., Kuznetsov V.V., Bogatyriov K.N. Online-Identification of Electromagnetic Parameters of an Induction Motor. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2020;63(5):423-440. https://doi.org/10.21122/1029-7448-2020-63-5-423-440

Просмотров: 713


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)