Preview

DOLOMITE THERMAL-DECOMPOSITION MACROKINETIC MODELS FOR EVALUATION OF THE GASGENERATORS SORBENT SYSTEMS

Abstract

Employing dolomite in the capacity of a sorbent for generator gas purification is of considerable interest nowadays, as it is the impurity of generator gas that causes the major problem for creating cheep and effective co-generator plants. Designing gas purification systems employs simple but physically adequate macrokinetic models of dolomite thermal decomposition.  The  paper  analyzes  peculiarities  of  several  contemporaneous  models  of  dolomite and calcite thermal decomposition and infers on reasonable practicality for creating compact engineering dolomite-decomposition macrokinetic models and universal techniques of these models parameter reconstruction for specific dolomite samples. Such technics can be founded on thermogravimetric data and standard approximation error minimizing algorithms.

The author assumes that CO2  evacuation from the reaction zone within the particle may proceed by diffusion mechanism and/or by the Darcy filtration and indicates that functional dependence of the thermal-decomposition rate from the particle sizes and the temperature differs for the specified mechanisms. The paper formulates four macrokinetic models whose correspondence verification is grounded on the experimental data. The author concludes that further work in this direction should proceed with the dolomite samples investigation and selecting the best approximation model describing experimental data in wide range of temperatures, warming up rates and the particle sizes.

About the Author

K. V. Dobrego
Belarusian National Technical University
Belarus

Professor, PhD in Physics and Mathematics



References

1. Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K., Mohamad Amran, G. M. S., Taufiq-Yap, Y. H. (2013). Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process. Journal of Energy, Vol. 2013, Article ID 791582. Doi: 10.1155/2013/791582

2. Hu, G., Xu, S., Li, S., Xiao, C., Liu, S. (2006). Steam Gasification of Apricot Stones with Olivine and Dolomite as Downstream Catalysts. Fuel Processing Technology, 87 (5), 375–382. Doi: 10.1016/j.fuproc.2005.07.008

3. Yu, Q. Z., Brage, C., Nordgreen, T., Sjöström, K. (2009). Effects of Chinese dolomites on tar cracking in gasification of birch. Fuel, 88, 1922–1926. Doi: 10.1016/j.fuel.2009.04.020..

4. Pérez, P., Aznar, M.P., Caballero, M.A., Gil, J., Martín, J.A., Corella, J. (1997).

5. Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidized bed gasifier operating with steam-oxygen mixtures. Energy and Fuels, 11 (6), 1194–1197. Doi: 10.1021/ef970046m

6. Myren, C., Hornell, C., Bjornbom, E., Sjoström, K. (2002).Catalytic Tar Decomposition of Biomass Pyrolysis Gas with a Combination of Dolomite and Silica. Biomass and Bioenergy, 23 (3), 217–237. Doi:10.1016/S0961-9534(02)00049-1

7. Han, J., Kim, H. (2008). The Reduction and Control Technology of Tar During Biomass Gasification. Renewable and Sustainable Energy Reviews, 12 (2), 397–416. Doi:10.1016/j.rser.2006.07.015

8. Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., Ortega-Huertas, M. (2009). Thermal Decomposition of Calcite: Mechanisms of Formation and Textural Evolution of CaO Nanocrystals. American Mineralogist, 94, 578–593. Doi: 10.2138/am.2009.3021

9. Wilburn, F. W., Sharp, J. H. (1993). The Bed-Depth Effect in the Thermal Decomposition of Carbonates. Journal of Thermal Analysis, 40, 133–140. Doi: 10.1007/BF02546563

10. Rodriguez-Navarro, C., Kudlacz, K., Ruiz-Agudo, E. (2012).The Mechanism of Thermal Decomposition of Dolomite: New Insights From 2D-XRD and TEM Analyses. American Mineralogist, 97 (1), 38–51. DOI: 10.2138/am.2011.3813

11. Mikulčić, H., von Berg, E., Vujanović, M., Priesching, P., Perković, L., Tatschl, R., Duić, N. (2012). Numerical Modeling of Calcination Reaction Mechanism for Cement Production. Chemical Engineering Science, 69 (1), 607–615. Doi: 10.1016/j.ces.2011.11.024.

12. Silcox, G. D., Kramlich, J. C., Pershing, D. W. (1989). A Mathematical Model for the flash Calcination of Dispersed CaCO3 and Ca(OH)2 Particles. Industrial and Engineering Chemistry Research, 28 (2), 155–160.

13. Schneider, M. (2003). Experimentelle und Mathematische Modellierung der Fes-Tbettvergasung am Beispiel der Gleichstromvergasung von Holzhackschnit-Zeln. Ph.D. Thesis. TU. Dresden (German).

14. Kern, C., Jess, A. (2006). Verkokung and Koksabbrand in Heterogenen Katalysatoren [Coking and coke burn off in heterogeneous catalysts]. Chemie-Ingenieur-Technik, 78 (8), 1033-1048. Doi: 10.1002/cite.200600051 (German)

15. Mohr, M. (2001). Numerische Simulation der Simultanen Reaktion von Kalkstein und Kohle bei der Zementherstellung. Ph.D. Thesis. Bochum, University of Ruhr. (German).

16. Mcintosh, R. M., Sharp, J. H., Wilburn, F. W. (1990). The Thermal Decomposition of Dolomite. Thermochimica Acta, 165 (2), 281–296. DOI: 10.1016/0040-6031(90)80228-Q


Review

For citations:


Dobrego K.V. DOLOMITE THERMAL-DECOMPOSITION MACROKINETIC MODELS FOR EVALUATION OF THE GASGENERATORS SORBENT SYSTEMS. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2015;(5):51-59. (In Russ.)

Views: 809


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)