SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND
Abstract
Modern Cooling Towers (CT) may utilize different aerodynamic elements (deflectors, windbreak walls etc.) aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.
Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity) at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.
Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.About the Authors
K. V. DobregoBelarus
M. M. Hemmasian Kashani
Belarus
E. E. Lasko
Belarus
References
1. Ming Gao, Feng-Zhong Sun, Kai Wang, Yue-tao Shi, & Yuan-bin Zhao. (2008) Experimental Research of Heat Transfer Performance on Natural Draft Counter Flow wet Cooling Tower Under Cross-Wind Conditions. International Journal of Thermal Sciences, 47, 935–941.
2. Caytan, Y. & Fabre, L. (1989) Wind Effects on the Performance of Natural Draft Wet Cooling Towers, Comparison of Constructors Proposals and Realization of Performance Control Tests. International Cooling-Tower Conference. Proceedings, 21 (17), Ref. Number 21068013.
3. Bender, T. J., Bergstrom, D. J., & Rezkallah, K. S. (1996) A Study on the Effects of Wind on the Air Intake Flow Rate of a Cooling Tower: Part 3. Numerical Study. Journal of Wind Engineering and Industrial Aerodynamics, 64 (1), 73– 88. doi: 10.1016/S0167-6105(96)00085-2.
4. Derksen, D. D., Bender, T. J., Bergstrom, D. J., & Rezkallah, K. S. (1996) A Study on the Effects of Wind on the Air Intake Flow Rate of a Cooling Tower: Part 1. Wind Tunnel Study. Journal of Wind Engineering and Industrial Aerodynamics, 64 (1), 47–59. doi: 10.1016/S0167-6105(96)00084-0.
5. Bender, T. J., Bergstrom, D. J., & Rezkallah, K. S. (1996) A Study on the Effects of Wind on the Air Intake Flow Rate of a Cooling Tower: Part 2. Wind all study. Journal of Wind Engineering and Industrial Aerodynamics, 64 (1), 61–72. doi: 10.1016/S0167-6105(96)00083-9.
6. Madadnia, J., Koosha, H., & Mirzaei, M. (2008) Effect of Wind Break Walls on Performance of a Cooling Tower Model. Mech. & Aerospace Eng. Journal, 3 (4), 61–67.
7. Al-Waked, R., & Behnia, M. (2005) The Effect of Windbreak Walls on the Thermal Performance of Natural Draft Dry Cooling Towers. Heat Transfer Engineering, 26 (8), 50–62. doi: 10.1080/01457630591003763.
8. Wang, K., Sun, F. Z., Zhao, Y. B., Gao, M., & Ruan, L. (2010) Experimental Research of the Guiding Channels Effect on the Thermal Performance of Wet Cooling Towers Subjected to Crosswinds-Air Guiding Effect on Cooling Tower. Applied Thermal Engineering, 30 (5), 533–538. doi: 10.1016/j.applthermaleng.2009.10.015.
9. Al-Waked, R. (2010) Crosswinds Effect on the Performance of Natural Draft Wet Cooling Towers. International Journal of Thermal Sciences, 49 (1), 218–224. doi: 10.1016/j.ijthermalsci.2009.07.012.
10. Wang, K., Sun, F. Z., Zhao, Y. B., Gao, M., & Shi, Y. T. (2008) Three-Dimensional Regularities of Distribution of Airinlet Characteristic Velocity in Natural-Draft Wet Cooling Tower. Journal of Hydrodynamics, 20 (3), 323–330.
11. Hemmasian Kashani, M. M., & Dobrego, K. V. (2013) Heat and Mass Transfer in the Over-Shower Zone of a Cooling Tower with Flow Rotation. Journal of Engineering Physics and Thermophysics, 86 (6), 1490–1499.
12. Al-Waked, R, & Behnia, M. (2006) CFD Simulation of Wet Cooling Towers. Applied Thermal Engineering, 26 (4), 382–395. doi: 10.1016/j.applthermaleng.2005.06.018.
13. Vlasov, A. V., Vykhota, S. O., Ganzha, V. A., Davydenko, V. F., Dashkov, G. V., Dikun, V. S., Zhdanov, V. L., Slizhevskaya, Y. M., Pavlyukevich, N. V., Solodukhin, A. D., Fisenko, S. P., & Homich, A. S. (1993) Cooling Tower. Patent of the RB No 1293.
14. Hemmasian Kashani, M. M., & Dobrego, K. V. (2013) Heat and Mass Transfer in Natural Draft Cooling Towers. Journal of Engineering Physics and Thermophysics, 86 (5), 1072–1082. doi: 10.1007/s10891-013-0930-z.
15. ANSYS® Academic Research, Release 14.5, Help System, FLUENT, ANSYS, Inc.
16. Panofsky, H. A., & Dutton, J. A. (1984) Atmospheric Turbulence: Models and Methods for Engineering Applications. New York, Wiley Press.
17. Petruchik, A., & Fisenko, S. (2001) Simulation of Natural Draft Cooling Tower Performance. The 12th IAHR Symposium in Cooling Tower and Heat Exchangers. Sydney, Australia, 80–86.
18. Kröger, D. G., (2004) Air-Cooled Heat Exchangers and Cooling Towers. Vol. 1. USA: PennWell Books.
19. Vlasov, A. V., Dashkov, G. V., Solodukhin, A. D., & Fisenko, S. P. (2002) Investigation of Internal Aerodynamics of Evaporative Cooling Tower. Inzhenerno-Fizicheskii Zhurnal [Journal of Engineering Physics and Thermophysics], 75 (5), 64–68 (in Russian). (Исследование внутренней аэродинамики башенной испарительной градирни / А. В. Власов [и др.] // ИФЖ. – 2002. – Т. 75 (5). – C. 1086–1091.)
20. Isachenko, V. P., Pavlovich, V. I., Osipova, V. A., & Sukhomel, A. S. (1981) Heat Transfer. Moscow, Energy, 292–294 (in Russian). (Теплообмен : учеб. для вузов / В. П. Исаченко [и др.]. – М.: Энергия, 1981. – C. 292–294.)
21. Hemmasian Kashani, M. M., & Dobrego, K. V. (2014) Influence of Flow Rotation Within a Cooling Tower on the Aerodynamic Interaction with Crosswind Flow. Journal of Engineering Physics and Thermophysics, 87 (2), 376–383. doi: 10.1007/s10891-014-1023-3.
22. Hemmasian Kashani, M. M., & Dobrego, K. V. (2014) Effect of Inlet Windows Deflectors and Windbreak Walls Height on Performance of Natural Draft Cooling Tower under Cross Wind Condition, Heat Transfer Research, in print.
23. Solodukhin, A. D., & Dashkov G. V. (2011) Research Report № 20113267, A. V. Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus, Minsk. (In Russian, Unpublished). (Отчет о НИР № 20113267 / А. Д. Солодухин [и др.] ; Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси, Минск, 2011.)
Review
For citations:
Dobrego K.V., Hemmasian Kashani M.M., Lasko E.E. SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2014;(6):47-60. (In Russ.)