Preview

ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations

Advanced search

Technologies for Improving the Operational Characteristics of Dynamic Gas-Liquid Thermal Power Plants with Controlled Laser Induction of Adjustable Local Configurations of Topological Micro-and Nanostructures on the Internal Metal Surface of Working Chambers. Раrt 1

https://doi.org/10.21122/1029-7448-2025-68-6-517-535

Abstract

The study considers one of the areas of modern surface nano-engineering using technologies for controlled formation of topological coatings of a given configuration under laser action on various samples, taking into account approaches for complex nonlinear thermodynamic systems with the development of dynamic non-equilibrium processes. The proposed technologies are universal in nature and are very promising, in particular, for metallic materials in the working chambers of thermal power plants. At the same time, the emphasis is placed on new physical principles for changing the functional characteristics of the sample material with their optimization for specific operating conditions of the sample with the formation of 1D 3D microand nanostructures, including dendritic type with fractal objects. Methods of controlled laser synthesis of surface topological structures were used in different experimental schemes with laser ablation. These controlled processes are implemented on the surface of products without changing the volumetric characteristics of the material, unlike the technologies of its standard heat treatment, for example, to increase wear resistance. Specifically, the first part of the presented article deals with the fundamental problem of laser thermodynamics of the emergence of dendritic/fractal structures on the surface of a material under conditions of the development of non-stationary thermophysical processes. The emphasis is placed on stable surface states of the material during its specialized preliminary laser processing, including the synthesis of various inhomogeneous and multilayer configurations on the surface with a certain 3D topology. The possibilities of achieving the required characteristics of the material used in a controlled manner to improve the performance properties of various systems are discussed. In particular, this also applies to dynamic gas-liquid thermal power plants with controlled laser guidance of adjustable local configurations of topological microand nanostructures on the inner metal surface of their working chambers. As an experimental demonstration, the micro-cracked surface structure of metal-carbon materials was considered within the model of their graphitization

About the Authors

T. V. Ryzhova
Belarusian National Technical University
Belarus

Address for correspondence:
Ryzhova Tatiana V.

Belarusian National Technical University
77, Partizansky Ave.,
220107, Minsk,
Republic of Belarus
Tel.: +375 17 250-36-95

ryzhovatv@bntu.by





D. A. Tumarkina
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Vladimir



D. N. Bukharov
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Vladimir



V. D. Samishkin
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Vladimir



A. F. Lelekova
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Vladimir



M. M. Arakelyan
Yerevan State University
Armenia

Yerevan



A. O. Kucherik
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Vladimir



S. M. Arakelyan
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Vladimir



References

1. Ryzhova T. V., Bukharov D. N., Arakelyan M. M., Arakelyan S. M. (2024) Dynamic Processes of Development Jointing of a Fractal Type: Models for a Solid-State Material of the Chamber in a Power Facility during its Operation. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 67 (2), 152–172. https://doi.org/10.21122/1029-7448-2024-67-2-152-172 (in Russian).

2. Ryzhova T. V., Bukharov D. N., Arakelian M. M., Arakelian S. M. (2024) Spontaneous Overgrowth of Jointing in the Working Chambers of Power Gas-Liquid Thermal Installations – Diffusion Dynamic Processes. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 67 (4), 345–362. https://doi.org/10.21122/1029-7448-2024-67-4-345-362 (in Russian).

3. Garnov S. V., Abramov D. V., Bukharov D. N., Khudaiberganov T. A., Khor’kov K. S., Osipov A. V., Zhirnova S. V., Kucherik A. O., Arakelyan S. M. (2023). Electrophysics of 1D-Carbon Structures Obtained in a Laser Experiment: Models and Demonstration. Physics-Uspekhi, 67 (02), 109–128. https://doi.org/10.3367/UFNe.2023.12.039620.

4. Khorkov K. S., Bukharov D. N., Podoprigora Ya. V., Burakova I. V., Burakov A. E., Kucherik A. O., Tkachev A. G., Arakelyan S. M. (2024) Synthesis of Allotropic Forms of Carbon in a Laser Experiment: 1D–3D Topological Configurations with Carbon Nanotubesand Diamond-Like Systems. Bulletin of the Russian Academy of Sciences: Physics, 88 (12), 2022–2033. https://doi.org/10.1134/s1062873824708638.

5. Bukharov D. N., Kucherik A. O., Arakelian S. M. (2023) Nanocluster Fractal Electrical Conductivity in Thin Films on a Solid Surface: Dimensional Models of Different Configurations and Demonstration of Results in a Laser Experiment. Journal of Advanced Materials and Technologies, 2023, 8 (3), 227–251. https://doi.org/10.17277/jamt.2023.03.pp.227-251.

6. Bukharov D., Khudaiberganov T., Tkachev A., Arakelian S. (2024). Technologies for Controlled synthesis and Characteristics of Thin-Layer Topological Nanoobjects and Nanoclusters Under Laser Irradiation on Solid Targets: Algorithms and Modeling, Quantum Bistability in 1D-Microstructuresand Analogy with Carbon Nanotubes. Journal of Advanced Materials and Technologies, 9 (1), 60–74. https://doi.org/10.17277/jamt.2024.01.pp.060-074.

7. Alexandrov D. V., Galenkо P. K. (2014) Dendrite Growth under Forced Convection: Analysis Mmethods and Experimental Tests. Physics Uspekhi, 57 (8), 771–786. https://doi.org/10.3367/UFNe.0184.201408b.0833.

8. Kavokin A., Kutrovskaya S., Kucherik A., Osipov A., Vartanyan T., Arakelyan S. (2017) The Crossover Between Tunnel and Hopping Conductivity in Granulated Films of Noble Metals. Superlattices and Microstructures, 111, 335–339. https://doi.org/10.1016/j.spmi.2017.06.050.

9. Eletskii A. V., Knizhnik A. A., Potapkin B. V., Kenny J. M. (2015) Electrical Characteristics of Carbon Nanotube Doped Composites. Physics – Uspekhi, 58 (3), 209–251. 10.3367/UFNe. 0185.201503a.0225.

10. Bauhofer W., Kovacs J. Z. (2009) A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites. Composites Science and Technology, 69 (10), 1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018.

11. Eletsky A. V. (2009) Transport Properties of Carbon Nanotubes. Physics – Uspekhi, 52 (3), 209–224. https://doi.org/10.3367/ufne.0179.200903a.0225.

12. Cardoso P., Silva J., Paleo A. J., van Hattum F. W. J., Simoes R., Lanceros-Méndez S. (2010) The Dominant Role of Tunneling in the Conductivity of Carbon Nanofiber Epoxy Composites. Physica Status Solidi (a), 207 (2), 407–410. https://doi.org/10.1002/pssa.200925334.

13. Salvato M., Cirillo M., Lucci M., Orlanducci S., Ottaviani I., Terranova M. L., Toschi F. (2008) Charge Transport and Tunneling in Single-Walled Carbon Nanotube Bundles. Physical Review Letters, 101 (24). https://doi.org/10.1103/physrevlett.101.246804.

14. Kucherik A. O., Osipov A. V., Arakelian S. M., Garnov S. V., Povolotckaya A. V., Kutrovskaya S. V. (2019) The Laser-Assisted Synthesis of Linear Carbon Chains Stabilized by Noble Metal Particle. Journal of Physics: Conference Series, 1164, 012006. https://doi.org/10.1088/1742-6596/1164/1/012006.

15. Forgerini F. L., Marchiori R. (2014) A Brief Review of Mathematical Models of Thin Film Growth and Surfaces: A Possible Route to Avoid Defects in Stents. Biomatter, 2014. V. 4, No 1. P. 28871. https://doi.org/10.4161/biom.28871.

16. Römer G. R. B. E., Huis in ’t Veld A. J. (2010) Matlab Laser Toolbox. Physics Procedia, 5, Part B, 413–419. https://doi.org/10.1016/j.phpro.2010.08.068.

17. Samarsky A. A., Vabishevich P. N. (2020) Computational Thermodynamics. Moscow, URSS Publ. 784 (in Russian).

18. Bukharov D. N. (2023) Thermal Diffusion Model of a System of Lead Telluride Nanoclusters. Nanoelektronika, nanofotonika i nelineinaya fizika: sb. trudov XVIII Vseros. konf. molodykh uchenykh [Nanoelectronics, Nanophotonics and Nonlinear Physics: Collection of Works of the 18th All-Russian Conference of Young Scientists]. Saratov, Techno-Décor Publ. 227 (in Russian).

19. Zuev A. Yu., Vylkov A. I., Tsvetkov D. S. (2011) Defect Structure and Oxide Ion Transport in Srand Cr-doped LaCoO3-δ. Solid State Ionics, 192 (1), 220–224. https://doi.org/10.1016/j.ssi.2010.05.049.

20. Berghoff D., Bühler J., Bonn M., Leitenstorfer A., Meier T., Kim H. (2021) Low-Field Onset of Wannier-Stark Localization in a Polycrystalline Hybrid Organic Inorganic Perovskite. Nature Communications, 12 (1). https://doi.org/10.1038/s41467-021-26021-4.

21. Frey P., Rachel S. (2022) Realization of a Discrete Time Crystal on 57 Qubits of a Quantum Computer. Science Advances, 8 (9), 7652. https://doi.org/10.1126/sciadv.abm7652.

22. Sun L.-H., Ounaies Z., Gao X.-L., Whalen C. A., Yang Z.-G. (2011) Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites. Journal of Nanomaterials, 2011, 1–8. https://doi.org/10.1155/2011/307589.

23. Magomedov M. N. (2003) On the Baric Fragmentation of a Crystal. Physics of the Solid State, 45 (5), 953–956. http://doi.org/10.1134/1.1575343.

24. Arakelian S., Kutrovskaya S., Kucherik A., Osipov A., Povolotckaia A., Povolotskiy A., Manshina A. (2016) Laser-Induced Synthesis of Nanostructured Metal–Carbon Clusters and Complexes. Optical and Quantum Electronics, 48 (11), 505. https://doi.org/10.1007/s11082016-0776-7.

25. Cannella C. B., Goldman N. (2015) Carbyne Fiber Synthesis within Evaporating Metallic Liquid Carbon. The Journal of Physical Chemistry C, 119 (37), 21605–21611. https://doi.org/10.1021/acs.jpcc.5b03781.

26. Kutrovskaya S. V., Arakelian S. М., Kucherik A. O., Osipov A. V., Garnov S. V. (2019) Long linear Carbon Chain–Laser-Induced Structures and Possible Applications. Laser Physics, 29 (8), 085901. https://doi.org/10.1088/1555-6611/ab183a.

27. Kucherik A. O., Arakelian S. M., Garnov S. V., Kutrovskaya S. V., Nogtev D. S., Osipov A. V., Khor’kov K. S. (2016) Two-Stage Laser-Induced Synthesis of Linear Carbon Chains. Quantum Electronics, 46 (7), 627–633. https://doi.org/10.1070/qel16128.

28. Landau, L. D., Lifshits E. M. (2002) Theoretical Physics. Vol. V. Statistical Physics. Part. 1. 5th ed. Moscow, Fizmatlit Publ. 616 (in Russian).

29. Tumarkina D. D., Butkovskii O. Ya., Bolachkov A. V., Burtsev A. A. (2023) Surface Topology of Mixing Entropy After Two-Pulse Laser Ablation of Stainless Steel. Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 15, 869–878. https://doi.org/10.26456/pcascnn/2023.15.869 (in Russian).

30. Belysheva T. V., Gatin A. K., Grishin M. V., Ikim M. I., Matyuk V. M., Sarvadii S. Y., Trakhtenberg L. I., Shub B. R. (2015) Structure and Physicochemical Properties of Nanostructured metal Oxide Films for Use as the Sensitive Layer in Gas Sensors. Russian Journal of Physical Chemistry B, 9 (5), 733–742. https://doi.org/10.1134/S1990793115050048.

31. Agyingi E., Wakabayashi L., Wiandt T., Maggelakis S. (2018) Eden Model Simulation of ReEpithelialization and Angiogenesis of an Epidermal Wound. Processes, 6 (11), 207. https://doi.org/10.3390/pr6110207.

32. Moskalev P. V. (2009) Analysis of the Percolation Cluster Structure. Technical Physics, 54 (6), 763–769. http://doi.org/10.1134/S1063784209060012.

33. Ryzhikova Yu. V., Ryzhikov S. B. (2018) Fractal Properties of Self-Organizing Dendritic Structures. Uchebnye Zapiski Fizicheskogo Fakulteta Мoskovskogo Universiteta = Memoirs of the Faculty of Physics, Lomonosov Moscow State University, (5), 1850401-1-1850401-7 (in Russian).

34. Mroczka J., Woźniak M., Onofri F. R. A. (2012) Algorithms and Methods for Analysis of the Optical Structure Factor of Fractal Aggregates. Metrology and Measurement Systems, 19 (3), 459–470. http://doi.org/10.2478/v10178-012-0039-2.

35. Çağdaş A., Allahverdi Y. (2024) Diffusion Limited Aggregation via Python: Dendritic Structures and Algorithmic Art. Journal of Scientific Reports-A, 58, 99–112. https://doi.org/10.59313/jsr-a.1454389.

36. Zaitsev D. A. (2017) A Generalized Neighborhood for Cellular Automata. Theoretical Computer Science, 666, 21–35. https://doi.org/10.1016/j.tcs.2016.11.002.

37. Ampilova N. B., Solovyov I. P. (2012) Algorithms for Fractal Image Analysis. Kompyuternye Instrumenty v Obrazovanii = Computer Tools in Education Journal, (2), 19–24 (in Russian).

38. Ismagilov R. G. (2022) Electric Field Near a Conductive Tip. Tekhnologii. Innovatsii. Svyaz': sb. materialov nauchno-prakt. konf. [Technology. Innovation. Communication: Collection of Materials of the Scientific and Practical Conference]. Saint Petersburg, 39–41 (in Russian).


Review

For citations:


Ryzhova T.V., Tumarkina D.A., Bukharov D.N., Samishkin V.D., Lelekova A.F., Arakelyan M.M., Kucherik A.O., Arakelyan S.M. Technologies for Improving the Operational Characteristics of Dynamic Gas-Liquid Thermal Power Plants with Controlled Laser Induction of Adjustable Local Configurations of Topological Micro-and Nanostructures on the Internal Metal Surface of Working Chambers. Раrt 1. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2025;68(6):517-535. (In Russ.) https://doi.org/10.21122/1029-7448-2025-68-6-517-535

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)