Preview

Simulation and Calculation of Parameters of a Small Solar Greenhouse in Order to Increase its Energy Efficiency

https://doi.org/10.21122/1029-7448-2025-68-4-367-384

Abstract

The article presents the results of research, during which using the example of the climatic conditions of the Kashkadarya region (Republic of Uzbekistan) a methodology has been developed to increase the energy efficiency of double-slope solar greenhouses. A literature analysis has shown the potential for energy savings in the greenhouse farming of the agribusiness. At the same time, it is shown that, despite the extensive research carried out in a number of countries in this area, it is necessary to continue studying the problem of putting into practice the parameters of their orientation on the terrain for various geographical regions to maximize the perceived total solar radiation. The paper presents an analysis of the research results on the dependence of the total solar radiation incidence on a gable glass-roofed greenhouse with a usable area of 50 m2, a wall height of 2 m and a roof slope height of 1.5 m on the design parameters of the latter and the trajectory of the sun. The simulation of the solar greenhouse operation modes was carried out in the MATLAB package, taking into account changes in the environmental parameters of the area in the period from November 15, 2023 to March 15, 2024 with a latitude of 38.87° and an orientation from 0 to 90° with an interval of 5°. As a result of the simulation, the optimal parameters of the greenhouse were determined for the above period (azimuthal angle of the surface γopt = 45°, angle of inclination of the surface βopt = 50°) with the maximum total solar radiation for the specified period equal to ∑Imax = 35660 MJ, which exceeds by 20% the radiation for a standard-sized greenhouse. Generalization of the simulation results made it possible to develop a methodology for determining the geometric characteristics (dimensions and orientation parameters) of solar gable greenhouses with specified climatic conditions according to the criterion of maximizing the incident total solar radiation in winter, which can be extended to other regions of Uzbekistan in order to increase the energy efficiency of the agribusiness sector.

About the Authors

G. N. Uzakov
Karshi State Technical University
Uzbekistan

Karshi, Republic of Uzbekistan



V. A. Sednin
Belarusian National Technical University
Belarus

Minsk, Republic of Belarus



A. B. Safarov
Karshi State Technical University; Bukhara State Technical University
Uzbekistan

Address for correspondence:

Safarov Alisher Bekmurodovich

Karshi State Technical University

225, Mustakillik Ave.,

180100, Karshi, Republic of Uzbekistan

Tel.: +998 90 299-41-24

a-safarov91@mail.ru



R. A. Mamedov
Bukhara State Technical University
Uzbekistan

Bukhara, Republic of Uzbekistan



O. I. Rakhmatov
Karshi State Technical University
Uzbekistan

Karshi, Republic of Uzbekistan



References

1. Uzakov G. N., Charvinski V. L., Ibragimov U. Kh., Khamraev S. I., Kamolov B. I. (2022) Mathematical Modeling of the Combined Heat Supply System of a Solar House. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (5), 412–421. https://doi.org/10.21122/1029-7448-2023-65-5-412-421 (in Russian).

2. Sednin A. V., Dyussenov K. M. (2024) Development of Hybrid District Heating Systems. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 67 (2), 173–188. https://doi.org/10.21122/1029-7448-2024-67-2-173-188 (in Russian).

3. Uzakov G. N., Sednin V. A., Safarov A. B., Mamedov R. A., Khatamov I. A. (2024) CFD-Modeling of the Airfoil of the Blades of a Wind Power Plant with a Vertical Axis in the Ansys Fluent System. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 67 (2), 97–114. https://doi.org/10.21122/1029-7448-2024-67-2-97-114 (in Russian).

4. Safarov A. B., Rakhmatov O. I., Uzakova Y. G. (2023) Autonomous Heat-Cooling and Power Supply System Based on Renewable Energy Devices (Trigeneration System). BIO Web of Conferences, 71, 02030. https://doi.org/10.1051/bioconf/20237102030.

5. Uzakov G. N., Kuziev Z. E., Safarov A. B., Mamedov R. A. (2024) Development of a System for Modeling the Design and Optimization of the Operation of a Small Hydroelectric Power Station. Gibadullin A. (ed.). Digital and Information Technologies in Economics and Management. DITEM 2023. Lecture Notes in Networks and Systems, 942, p. 243–252. https://doi.org/10.1007/978-3-031-55349-3_20.

6. Sethi V. P. (2009) On the Selection of Shape and Orientation of a Greenhouse: Thermal Modeling and Experimental Validation. Solar Energy, 83 (1), 21–38. https://doi.org/10.1016/j.solener.2008.05.018.

7. Çakır U., Şahin E. (2015) Using Solar Greenhouses in Cold Climates and Evaluating Optimum Type According to Sizing, Position and Location: A Case Study. Computers and Electronics in Agriculture, 2015, 117, 245–257. https://doi.org/10.1016/j.compag.2015.08.005.

8. Chen J., Ma Y., Pang Z. (2020) A Mathematical Model of Global Solar Radiation to Select the Optimal Shape and Orientation of the Greenhouses in Southern China. Solar Energy, 205 (6), 380–389. https://doi.org/10.1016/j.solener.2020.05.055.

9. Dragichevich S. M. (2011) Determining the Optimum Orientation of a Greenhouse on the Basis of the Total Solar Radiation Availability. Thermal Science, 15 (1), 215–221. https://doi.org/10.2298/tsci100220057d.

10. Xu D., Li Y., Zhang Y., Xu H., Li T. (2020) Effects of Orientation and Structure on Solar Radiation Interception in Chinese Solar Greenhouse. PLOS ONE, 15 (11), e0242002. https://doi.org/10.1371/journal.pone.0242002.

11. Karambasti B. M., Naghashzadegan M., Ghodrat M., Lalbakhsh A. (2022) Optimal Solar Greenhouses Design Using Multiobjective Genetic Algorithm. IEEE Access, 10, 73728–73742. https://doi.org/10.1109/ACCESS.2022.3189348.

12. Mellalou A., Mouaky A., Bacaoui A., Outzourhit A. A (2022) Comparative Study of Greenhouse Shapes and Orientations Under the Climatic Conditions of Marrakech, Morocco. International Journal of Environmental Science and Technology, 19, 6045–6056. https://doi.org/10.1007/s13762-021-03556-z.

13. Penjiyev A. M. (2010) Mathematical Model of Sheet Temperature Mode Calculation in Hot-House Conditions. International Scientific Journal for alternative energy and Ecology (ISJAEE), (11), 65–68 (in Russian).

14. Vardiashvili A. B., Kim V. D. (1980) Hydraulic and Thermal Calculation of the Subsoil Storage System of Solar Greenhouses. Geliotekhnika, (6), 48–53 (in Russian).

15. Khalimov A. G., Khairiddinov B. E., Kim V. D., Khalimov G. G. (2013) Modeling the Heat Balance of a Solar Greenhouse with a Passive Heat Accumulator. Applied Solar Energy, 49 (4). 211–214. https://doi.org/10.3103/S0003701X13040063.

16. Klychev S. I., Rasakhodzhaev B. S., Akhadov, Z. Z., Akhmadjonov U. Z., Adylov Ch. A. (2022) Study of the Thermal Regime of Solar Greenhouses for the Individual Purpose for Their Design Features. Applied Solar Energy, 58 (1), 121–126. https://doi.org/10.3103/S0003701X22010091.

17. Akhatov Z. S., Khalimov A. S. (2015) Numerical Calculations of Heat Engineering Parameters of a Solar Greenhouse Dryer. Applied Solar Energy, 51 (2), 107–111. https://doi.org/10.3103/S0003701X15020024.

18. Samiev K. A., Akhatov J. S. (2011) Study of the Performance of Greenhouse with Short Term Heat Storage and Night Insulation. Proceedings of the ISES Solar World Congress, 826–830. https://doi.org/10.18086/swc.2011.15.11.

19. Rasakhodzhaev B. S., Akhmadjanov U. Z., Boboeva M. O., Mashrapova I. R., Tokonova T. S. (2022) Investigation of Solar Greenhouses with Transformable (Adjustable) Body Depending on Indoor and Outdoor Air Temperature. IOP Conference Series: Earth and Environmental Science, 1070 (1), 012030. https://doi.org/10.1088/1755-1315/1070/1/012030.

20. Yuldashev I. A., Botirov B. M., Kholmirzayev N. S., Qurbanov Y. M. (2023) About the Production of Lemons Grown in an Autonomous Gabled Solar Greenhouse. Applied Solar Energy, 59 (1), 44–47. https://doi.org/10.3103/S0003701X23600431.

21. Nasa Power. Data Access Viewer (DAV). Available at: https://power.larc.nasa.gov/data-access-viewer.

22. Ng K. M., Adam N. M., Inayatullah O., Каdir A. (2014) Assessment of Solar Radiation on Diversely Oriented Surfaces and Optimum Tilts for Solar Absorbers in Malaysian Tropical Latitude. International Journal of Energy and Environmental Engineering, 5 (1). https://doi.org/10.1007/s40095-014-0075-7.

23. Kendirli B. (2006) Structural Analysis of Greenhouses: A Case Study in Turkey. Building and Environment, 41, 864–871. https://doi.org/10.1016/j.buildenv.2005.04.013.

24. Hailu G., Fung A.S. (2019) Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada. Sustainability, 2019, 11 (22), 6443. https://doi.org/10.3390/su11226443.

25. Gheyrati M., Akram A., Ghasemi-Mobtaker H. (2022) Optimum Orientation of the Multi-Span Greenhouse for Maximum Capture of Solar Energy in Central Region of Iran. Journal of Renewable Energy and Environment, 9 (3), 65–74. https://doi.org/10.30501/jree.2022.305780.1259.

26. Gairaa K., Khellaf A., Chellali F., Benkaciali S., Bakelli Y., Bezari S. (2015) Maximisation and Optimisation of the Total Solar Radiation Reaching the Solar Collector Surfaces. Dincer I., Colpan C., Kizilkan O., Ezan M. (eds.) Progress in Clean Energy. Vol. 2. Springer, Cham. https://doi.org/10.1007/978-3-319-17031-2_57.

27. Duffie J. A., Beckman W. A. (2013) Solar Engineering of Thermal Processes. John Wiley & Son, New Jersey. 910 https://doi.org/10.1002/9781118671603.

28. Tabet I., Touafek K., Bellel N., Bouarroudj N., Khelifa A., Adouane M. (2014). Optimization of Angle of Inclination of the Hybrid Photovoltaic-Thermal Solar Collector Using Particle Swarm Optimization Algorithm. Journal of Renewable and Sustainable Energy, 6 (5), 053116. https://doi.org/10.1063/1.4896956.

29. Jafarkazemi F., Saadabadi A. S. (2013) Optimum Tilt Angle and Orientation of Solar Surfaces in Abu Dhabi, UAE. Renewable Energy, 2013, 56, 44–49. https://doi.org/10.1016/j.renene.2012.10.036.

30. Singh R. D., Tiwari G. N. (2010) Energy Conservation in the Greenhouse System: A Steady State Analysis. Energy, 2010, 35 (6), 2367–2373. https://doi.org/10.1016/j.energy.2010.02.003.

31. Mobtaker H. G., Ajabshirchi Y., Ranjbar S. F., Matloobi M. (2016) Solar Energy Conservation in Greenhouse: Thermal Analysis and Experimental Validation. Renewable Energy, 96 (A), 509–519. https://doi.org/10.1016/j.renene.2016.04.079.

32. Mellalou A., Riad W., Mouaky A., Bacaoui A., Outzourhit A. (2021) Optimum Design and Orientation of a Greenhouse for Seasonal Winter Drying in Morocco under Constant Volume Constraint. Solar Energy, 230, 321–332. https://doi.org/10.1016/j.solener.2021.10.050.

33. El-Maghlany W. M., Teamah M. A., Tanaka H. (2015) Optimum Design and Orientation of the Greenhouses for Maximum Capture of Solar Energy in North Tropical Region. Energy Conversion and Management, 105, 1096–1104. https://doi.org/10.1016/j.enconman.2015.08.066.

34. Mahjoob Karambasti B., Ghodrat M., Naghashzadegan M., Ghorbani G. Optimum Design of a Greenhouse for Efficient Use of Solar Radiation Using a Multi-objective Genetic Algorithm. Energy Efficiency, 15 (8), 66. https://doi.org/10.1007/s12053-022-10073-6.


Review

For citations:


Uzakov G.N., Sednin V.A., Safarov A.B., Mamedov R.A., Rakhmatov O.I. Simulation and Calculation of Parameters of a Small Solar Greenhouse in Order to Increase its Energy Efficiency. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2025;68(4):367-384. (In Russ.) https://doi.org/10.21122/1029-7448-2025-68-4-367-384

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)