Preview

ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations

Advanced search

Analytical Solution of the Mathematical Model of Anaerobic Fermentation in a Flow Bioreactor for Biogas Production

https://doi.org/10.21122/1029-7448-2025-68-3-259-273

Abstract

The article briefly considers the current state and prospects for the development of biogas (biomethane) production technologies during organic waste recycling. The relevance of the problem is determined by the fact that the experience of operating biogas complexes in the conditions of the Republic of Belarus during biogas generation only from organic waste has shown low economic efficiency. Atthesametime, solving the importanttaskofrecyclingindustrialandhouseholdwaste while simultaneouslyobtaining an energyresourceandorganicfertilizerisnotonlynecessary,butalso an attractiveresult from boththeenvironmentalandenergy production points. The state of this problem abroad shows the presence of potential for the development of biotechnology in our country both in the technological and in the system-constructive design of biogas complexes. The implementation of this potential in practice presupposes that the developers have an adequate mathematical apparatus describing the transfer processes in bioreactors. An analytical solution of the mathematical model of the organic waste fermentation process is given, which is supposed to be used to study the transfer processes in flow-type biotanks when designing hybrid energy-technological systems for biogas generation using alternative energy sources. It is shownthat the mathematicalmodelobtained as aresult of the analyticalreviewfor the studyis in goodagreementwith the empirical data obtainedtodescribe the continuousoperationof a flow-through bioreactor,andisingoodagreementwith the results of numericalcalculationsofanalyticalmodels by anumber of otherresearchers. Thisanalyticalsolution makes it possible to determine the characteristicdependences of the biogasproductionrate, the dynamics of itsgenerationrate,changes in the concentration of nutrientabsorbed by bacteria,and the concentration of bacteriain a flow-typebioreactordependingon the rate of nutrientsupply to thebioreactor. The obtainedsolutionsareexpected to be usedin the synthesis of controlalgorithms for the developed multi-resourcehybridenergy technology systemforgeneratingandenrichingbiogas of a flow-storagetypeusingalternativeenergysources.

About the Authors

V. A. Sednin
Belarusian National Technical University
Belarus

Address for correspondence:
Sednin Vladimir А. –
Belа
rusian National Technical University,
65/2, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus.
Tel.: +375 17 293-92-16 
vsednin@bntu.by



P. P. Khramsov
Belarusian National Technical University
Belarus

Minsk



N. A. Sednin
Belarusian National Technical University
Belarus

Minsk



References

1. Sednin V. A., Khramtsov P. P. (2024) The Current State and Main Trends in the Development of Biogas Generation Systems. Energoeffektivnost' [Energy efficiency], (8), 8–13 (in Russian).

2. Zelianukha A. V., Tsyhanava H. А., Belskaya H. V., Khrypovich H. A. (2024) Justification of the Use of Biogas for Power Generation in the Republic of Belarus. Energetika. Proc. CIS Higher Educ. Inst. and Power Eng. Assoc. 67 (6), 530–543. https://doi.org/10.21122/1029-7448-2024-67-6-530-543 (in Russian).

3. Global Bioenergy Statistics 2022. World Bioenergy Association. Available at: https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf.

4. Mahapatra S., Kumar D., Singh B., Sachan P. K. (2021) Biofuels and Their Sources of Production: A Review on Cleaner Sustainable Alternative Against Conventional Fuel, in the Framework of the Food and Energy Nexus. Energy Nexus, 4, 100036. https://doi.org/10.1016/j.nexus.2021.100036.

5. European Biogas Association. Available at: http://european-biogas.eu.

6. Ambaye T. G., Vaccari M., Bonilla-Petriciolet A., Prasad S., van Hullebusch E. D., Rtimi S. (2021) Emerging Technologies for Biofuel Production: A Critical Review on Recent Progress, Challenges and Perspectives. Journal of Environmental Management, 290, 112627. https://doi.org/10.1016/j.jenvman.2021.112627.

7. Shchukina T. V. (2012) Biogas: prospects and production opportunities. Izvestiiya Vuzov. Prikladnaya Khimiya I Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology, (1), 113–118 (in Russian).

8. Kovalev A. A. (1998) Technologies and Feasibility Study of Biogas Production in Manure Recycling Systems of Livestock Farms [Dissertation]. Moscow, All-Russian. Research Institute of Rural Electrification. 36 (in Russian).

9. Dvoretskii D. S., Dvoretskii S. I., Muratova E. I., Ermakov A. A. (2005) Computer Simulation of Biotechnological Processes and Systems. Tambov, Tambov State Technical University (TSTU). 80 (in Russian).

10. Isakov V. G., Abramova A. A., Dyagelev M. Yu. (2020) Energy Efficiency of a Small Bioreactor in Various Climatic Zones. Energetika. Proc. CIS Higher Educ. Inst. and Power Eng. Assoc. 63 (4), 355–364. https://doi.org/10.21122/1029-7448-2020-63-4-355-364 (in Russian).

11. Kafarov V. V., Glebov M. B. (1991) Mathematical Simulation of the Main Processes of Chemical Production. Moscow, Vysshaya shkola Publ. 400 (in Russian).

12. Geber M., Span R. (2008) An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas. International Gas Union IGRC 2008. Paris. Available at: https://www.researchgate.net/profile/Mandy-Ger-ber/publication/283518957_An_analysis_of_available_mathematical_models_for_anaerobic_digestion_of_organic_substances_for_production_of_biogas/links/53d0be4d0cf2fd75bc5d3e8f/An-analysis-of-available-mathematical-models-for-anaerobic-digestion-of-organic-substances-for-production-of-biogas.pdf.

13. Bastin G., Dochain D. (1990) On-line Estimation and Adaptive Control of Bioreactors. Amsterdam – Oxford – New Yourk – Tokyo, Elsevier. 377.

14. Velázquez-Martí B., Meneses-Quelal, O. W., Gaibor-Chavez J., Niño-Ruiz Z. (2019) Review of Mathematical Models for the Anaerobic Digestion Process. Banu J. R. (ed.). Anaerobic Digestion. Intechopen. https://doi.org/10.5772/intechopen.73348.

15. Kushcheev L. A., Suslov D. Y., Alifanova A. I., Nikulin N. Yu. (2011) Mathematical Simulation of the Biogas Production Process during the Processing of Organic Waste. Ekologiya i Promyshlennost' [Ecology and Industry], (3), 81–84 (in Russian).

16. Ruzhinskaya L. I., Fomenkova A. A. (2014) Mathematical Simulation of the Processes of Anaerobic Digestion of an Organic Substrate. Review. ScienceRise, (4/2), 63–69 (in Russian).

17. Kholodniok M., Klich A., Kubichek M., Marek M. (1991) Methods of Analysis of Nonlinear Dynamic Models. Мoscow, Mir Publ. 368 (in Russian).

18. Baader W., Dohne E., Brenndörfer M. (1978) Biogas in Theorie und Praxis: Behandlung Organischer Reststoffe aus der Landwirtschaft durch Methangärung. Münster: Darmstadt-Kranichstein Verlag. 134.

19. Chen J., Risberg M., Westerlund L., Jansson U., Lu X., Wang C., Ji X. (2020) A High Efficient Heat Exchanger with Twisted Geometries for Biogas Process with Manure Slurry. Applied Energy, 279, 115871. https://doi.org/10.1016/j.apenergy.2020.115871

20. Axaopoulos P., Panagakis P., Tsavdaris A., Georgakakis D. (2001). Simulation and Experimental Performance of a Solar-Heated Anaerobic Digester. Solar Energy, 70 (2), 155–164 https://doi.org/10.1016/s0038-092x(00)00130-4.

21. Khalid Z. B., Siddique M. N. I., Nasrullah M., Singh L., Wahid Z. B. A., Ahmad M. F. (2019). Application of Solar Assisted Bioreactor for Biogas Production from Palm Oil Mill Effluent Co-digested with Cattle Manure. Environmental Technology & Innovation, 16, 100446. https://doi.org/10.1016/j.eti.2019.100446.

22. Velichko V. V., Kundas S. P., Kapustin N. F. (2017) Improving the Efficiency of Biogas Technologies. Energoeffektivnost' [Energy efficiency], (7), 10–12 (in Russian).

23. Achinas S., Willem Euverink G. J. (2020) Rambling Facets of Manure-based Biogas Production in Europe: A Briefing. Renewable and Sustainable Energy Reviews, 119, 109566. https://doi.org/10.1016/j.rser.2019.109566.

24. Gerardi M. H. (2003) The Microbiology of Anaerobic Digesters. Hoboken, John Wiley&Sons, Inc. 177. https://doi.org/10.1002/0471468967.

25. Deublein D., Steinhauser A. (eds.) (2008) Biogas from Waste and Renewable Resources. An Introduction. Weinheim, WILEY-VCH Verlag, 443. https://doi.org/10.1002/9783527621705.

26. Korolev S. A., Maykov D. V. (2012) Identification of a Mathematical Model and Research of the Various Modes of Methanogenesis in Mesophilic Environments. Computer Research and Modeling, 4 (1), 131–141 (in Russian).

27. Korolev S. A., Maikov D. V., Rusyak I. G. (2012) The Research of Stationary Solutions and the Optimization of Parameters of the Mathematical Model of Methanogenesis. Tomsk State University Journal of Mathematics and Mechanic, (3), 15–21 (in Russian).

28. Shimova Yu. S. (2018) Modeling of Biotechnological Processes. Krasnoyarsk, SibSAU named after M. F. Reshetnev. 96 (in Russian).

29. Biryukov V. V. (2004) Fundamentals of Industrial Biotechnology. Moscow, Kolos Publ. 296 (in Russian).

30. Smiryaev A. V., Isachkin A. V., Pankina L. K. (2015) Modeling in Biology and Agriculture. 3rd Ed. Moscow, RSAU-MTAA Publ. 153 (in Russian).

31. Angelidaki I., Ellegaard L., Ahring B. K. (1999) A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnology and Bioengineering, 63 (3), 363–372. https://doi.org/10.1002/(sici)1097-0290(19990505)63:3<363::aid-bit13>3.0.co;2-z.

32. Campbell G. S., Norman J. M. (1998) An Introduction to Environmental Biophysics. New York, Springer-Verlag Inc. 286. https://doi.org/10.1007/978-1-4612-1626-1.

33. Panikov N. S. (1991) Kinetics of Microbial Growth: General Patterns and Ecological Applications. Moscow, Nauka Publ. 309 (in Russian).

34. Vavilin V. A., Vasiliev V. B., Rytov S. V. (1993) Modeling the Destruction of Organic Matter by a Community of Microorganisms. Moscow, Nauka Publ. 202 (in Russian).

35. Kamke E. (1966) Handbook of Partial Differential Equations of the First Order. Moscow: Nauka Publ. 260 (in Russian).


Review

For citations:


Sednin V.A., Khramsov P.P., Sednin N.A. Analytical Solution of the Mathematical Model of Anaerobic Fermentation in a Flow Bioreactor for Biogas Production. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2025;68(3):259-273. (In Russ.) https://doi.org/10.21122/1029-7448-2025-68-3-259-273

Views: 53


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)