Preview

Soil and Ground Factors Affecting the Steel Underground Pipelines Corrosion Process and their Computer Simulation

https://doi.org/10.21122/1029-7448-2025-68-3-230-244

Abstract

Corrosion of various gas pipelines,especially such widespreadtype of it aselectrochemical ones,isthemainthreattosteelundergroundpipelines during the operational phase. The negativeeffect of corrosionisthedirectloss of metal,increasedmaterialandlaborcostsformaintenance,repairandreplacement of pipelines,equipmentdowntime,deterioration of safetyandenvironmentalsituationincase of release of the pumpedproduct(especiallyifit is combustiblegasoroilandpetroleum products)into the environment.Thearticleprovides an analysis of the complex of soil-and-soilfactorsaffectingtheintensity of corrosionprocessesoccurringonundergroundsteelpipelines, and highlightscurrentresearchapproachestothisissue as well asdomesticandforeign relevant literature sources. Thekeyparametersdetermining the corrosiveaggressiveness of the soil,suchashumidity,soil aeration,its physical-and-mechanical properties, the chemicalcomposition of the soilelectrolyte(including the content of chloridesandsulfates), the presence of a number of specificsoilmicroorganisms, areconsidered. The possibility and expediency of using the computer simulation method to assess their impact using modern software tools, in particular, the SOLID and ANSYS software environments, as well as neural network modeling technologies, are considered and demonstrated. Computer simulation provides ample opportunities for analyzing and predicting corrosion processes depending on changes in environmental conditions, which can be of great practical importance for a better understanding of these processes and their impact on the reliability and durability of steel underground pipelines inthesespecificconditions.

About the Authors

V. N. Romaniuk
Belarusian National Technical University
Belarus

Address for correspondence:
Romaniuk Vladimir N. –
Belа
rusian National Technical University,
65/2, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus.
Tel.: +375 17 293-92-16 
pte@bntu.by



A. M. Niyakovskii
Euphrosyne Polotskaya State University of Polotsk
Belarus

Novopolotsk



N. V. Strutsky
NII Belgiprotopgaz
Belarus

Minsk



A. L. Svistun
Belarusian National Technical University
Belarus

Minsk



References

1. Strutsky N. V., Romaniuk V. N. (2024) Organization оf Electrochemical Protection оf Steel Underground Pipelines Against Corrosionin the Gas Distribution Industry of the Republic of Belarus. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 67 (3), 257–267. https://doi.org/10.21122/1029-7448-2024-67-3-257-267 (in Russian).

2. Okolelova A. A., Zheltobryukhov V. F., Egorova G. S. (2017) Ecological Soil Science and the Laws of Ecology. Volgograd, VSAU-VolgSTU. 216 (in Russian).

3. Fedorchenko V. I. (2009) Corrosion of Metals. Orenburg, Orenburg State University. 127 (in Russian).

4. Kuliyev S. I., Borisevich I. S. (2002) Physico-chemical Fundamentals of Corrosion Processes. Vitebsk, Publishing House of VSU Named after P. M. Masherov. 71 (in Russian).

5. Novgorodtseva O. N., Rogozhnikov N. A. (2019) Corrosion of Metals and Methods of Corrosion Protection. Novosibirsk, NSTU Publishing House. 162 (in Russian).

6. Perelygin Yu. P., Los’ I. S., Kireev S. Yu. (2015) Corrosion and Corrosion Protection of Metals. Penza, PSU Publishing House. 88 (in Russian).

7. Maskalenko S. S., Kulikova E. S. (2018) Features of Corrosion of Main Pipelines under the Influence of Land and Soils. Scientific, Technical and Economic Cooperation of the Countries of Asia-Pacific Region in the 21st Century. Vol. 1. Khabarovsk, Far Eastern State Transport University, 400–404 (in Russian).

8. State Standard 12536-2014. Soils. Methods of Laboratory Determination of Granulometric (Grain) and Microaggregate Composition. Moscow, Standartinform, 2015. 18 (in Russian).

9. Amaya-Gómez R., Bastidas-Arteaga, E., Muñoz F., Sánchez-Silva M. (2021) Statistical Soil Characterization of an Underground Corroded Pipeline Using In-Line Inspections. Metals, 11 (2), 292. https://doi.org/10.3390/met11020292.

10. Hamilton W. A. (1985) Sulphate-reducing Bacteria and Anaerobic Corrosion. Annual Review of Microbiology, 39 (1), 195–217. https://doi.org/10.1146/annurev.mi.39.100185.001211.

11. Wasim M., Shoaib S., Mubarak N. M., Asiri A. M. (2018) Factors Influencing Corrosion of Metal Pipes in Soils. Environmental Chemistry Letters, 16 (3), 861–879. https://doi.org/10.1007/s1-0311-018-0731-x.

12. Arriba-Rodriguez L.-D., Villanueva-Balsera J., Ortega-Fernandez F., Rodriguez-Perez F. (2018) Methods to Evaluate Corrosion in Buried Steel Structures: A Review. Metals, 8 (5), 334–355. https://doi.org/10.3390/met8050334.

13. Azoor R. M., Deo R. N., Birbilis N., Kodikara J. K. (2018) Coupled Electro-Chemical-Soil Model to Evaluate the Influence of Soil Aeration on Underground Metal Pipe Corrosion, Corrosion, 74 (11), 1177–1191. https://doi.org/10.5006/2860.

14. Cole I. S., Marney D. (2012) The Science of Pipe Corrosion: A Review of the Literature on the Corrosion of Ferrous Metals in Soils. Corrosion Science, 56, 5–16. https://doi.org/10.1016/j.corsci.2011.12.001.

15. Azoor R., Deo R., Kodikara J. (2019) Modelling and Testing of Optimum Soil Moisture Levels in the Corrosion of Underground Pipelines. E3S Web of Conferences, 92, 16002. https://doi.org/10.1051/e3sconf/20199216002.

16. Bai X., He B., Han P., Xie R., Sun F., Chen Z., Wang Y., Liu X. (2022) Corrosion Behavior and Mechanism of X80 Steel in Silty Soil under the Combined Effect of Salt and Temperature. RSC Advances, 12 (1), 129–147. https://doi.org/10.1039/d1ra08249c.

17. Benkhedda F., Bensaid I., Benmoussat A., Benmansour S. A., Amara Zenati A. (2024) Corrosion of API 5L X60 Pipeline Steel in Soil and Surface Defects Detection by Ultrasonic Analysis. Metals, 14 (4), 388. https://doi.org/10.3390/met14040388.

18. Qi G., Qin G., Qin X., Xie J., Han P., He B. (2022) Electrochemical Corrosion Behaviour of Four Low-carbon Steels in Saline Soil. RSC Advances, 12 (32), 20929–20945. https://doi.org/10.1039/d2ra03200g.

19. Su H., Mi S., Peng X., Han Y. (2019) The Mutual Influence Between Corrosion and the Surrounding Soil Microbial Communities of Buried Petroleum Pipelines. RSC Advances, 9 (33), 18930–18940. https://doi.org/10.1039/c9ra03386f.

20. Cervová J., Hagarova M. (2015) The Effect of Soil Environment on The Corrosion of Pipeline. Acta Metallurgica Slovaca, 21 (2), 102–110. https://doi.org/10.12776/ams.v21i2.566.

21. Lin C., Ruan H. (2020) Multi-Phase-Field Modeling of Localized Corrosion Involving Galvanic Pitting and Mechano-Electrochemical Coupling. Corrosion Science, 177, 108900. https://doi.org/10.1016/j.corsci.2020.108900.

22. Kutepov S. N., Sergeev A. N., Gvozdev A. E., Chukanov A. N., Tereshin V. A., Kuzovleva O. V., Tsoi E. V., Krupitsyn E. S. (2021) Modeling of the Process of Corrosion Cracking of Underground Pipelines. Chebyshevskii Sbornik, 22 (5), 374–383. https://doi.org/10.22405/2226-8383-2021-22-5-374-383 (in Russian).

23. Yegorchenko R., Yavorskyi A., Dyachkov P., Yegorchenko R. (2024) Modeling the Corrosive Destruction of Underground Degassing Pipelines. Mining Machines, 41 (4), 220–230.

24. Ovchinnikov I. G., Bubnov S. A. (2011) Application of Program Complex ANSYS to Calculation of the Thick-walled Pipeline which Is Exposed to High-temperature Local Hydrogen Corrosion. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 11 (3), 100–102. https://doi.org/10.18500/1816-9791-2011-11-3-2-100-102 (in Russian).

25. Azoor R., Deo R., Shannon B., Fu G., Ji J., Kodikara J. (2022) Predicting Pipeline Corrosion in Heterogeneous Soils Using Numerical Modelling and Artificial Neural Networks. Acta Geo-technica, 17 (4), 1463–1476. https://doi.org/10.1007/s11440-021-01385-5.

26. Nguyen T. Ch., Choi S.-R., Kim J.-G. (2022) Comparison of Response Surface Methodologies and Artificial Neural Network Approaches to Predict the Corrosion Rate of Carbon Steel in Soil. Journal of the Electrochemical Society, 169 (5), 051503. https://doi.org/10.1149/1945-7111/ac700d.


Review

For citations:


Romaniuk V.N., Niyakovskii A.M., Strutsky N.V., Svistun A.L. Soil and Ground Factors Affecting the Steel Underground Pipelines Corrosion Process and their Computer Simulation. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2025;68(3):230-244. (In Russ.) https://doi.org/10.21122/1029-7448-2025-68-3-230-244

Views: 188


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)