Current Transformer Saturation Detection Method Based on Artificial Neural Network
https://doi.org/10.21122/1029-7448-2023-66-3-233-245
Abstract
When current transformer is saturated, mainly due to the presence of an exponentially decaying DC component in the fault current, its secondary current has a distinctive distorted waveform which significantly differs from its primary (true) waveform. It leads to an underestimation of the secondary current value calculated by the relay protection compared to its true value. Thus, in its turn, results in trip time delay or even in a relay protection devices operation failure, since its settings and algorithms are calculated and designed on the assumption that the secondary current waveform is sinusoidal and proportional to the primary. And since, when using classical electromagnetic current transformer, it is impossible to exclude the possibility of its saturation, the detection of such abnormal condition is an urgent technical problem. The article proposes to use an artificial neural network for this purpose, which, together with the traditional method of saturation detection based on adjacent secondary current samples comparison, allows implementing a fast and reliable current transformer saturation detector. The article details the stages of the practical implementation of such an artificial neural network. The MATLAB-Simulink environment was used for assess the proposed saturation detector operation. The experiments that had been performed confirmed that proposed method provides fast and accurate saturation detection within the wide range of the power system and current transformer parameters change.
About the Author
Yu. V. RumiantsevBelarus
Address for correspondence:
Rumiantsev Yury V. –
Belаrusian National Technical University,
65/2, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus.
Tel.: +375 17 326-89-51
y.rumiantsev@gmail.com
References
1. Rumiantsev Yu. V., Romaniuk F. A. (2021) An Artificial Neural Network Developed in MATLAB-Simulink for Reconstruction a Distorted Secondary Current Waveform. Part 1. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 64 (6), 479–491 (in Russian). https://doi.org/10.21122/1029-7448-2021-64-6-479-491
2. Rumiantsev Yu. V., Romaniuk F. A. (2022) An Artificial Neural Network Developed in MATLAB-Simulink for Reconstruction a Distorted Secondary Current Waveform. Part 2. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (1), 5–21 (in Russian). https://doi.org/10.21122/1029-7448-2022-65-1-5-21
3. Rebizant W., Hayder T., Schiel L. (2004) Prediction of CT Saturation Period for Differential Relay Adaptation Purposes. International Conference on Advanced Power System Automation and Protection, 1–6.
4. Rumiantsev Yu. V. (2016) A Comprehensive Model for the Power Transformer Digital Differential Protection Functioning Research. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 59 (3), 203–224 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-3-203-224
5. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2018). Digital Current Measurement Element for Operation during Current Transformer Severe Saturation. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 61 (6), 483–493 (in Russian). https://doi.org/10.21122/1029-7448-2018-61-6-483-493
6. Zocholl S. E., Mooney J. (2004) Primary High-Current Testing of Relays with Low Ratio Current Transformers. 57th Annual Conference for Protective Relay Engineers, College Station, TX, USA, 182–189. https://doi.org/10.1109/CPRE.2004.238491
7. Bhide S. R. (2014) Digital Power System Protection. PHI Learning Pvt. Ltd. 280.
8. Schneerson E. M. (2007) Digital Relay Protection. Moscow, Energoatomizdat Publ. 549 (in Russian).
9. Romaniuk F., Rumiantsev V., Novash I., Rumiantsev Y., Boiko O. (2016) Comparative Assessment of Digital Filters for Microprocessor-Based Relay Protection. Przegląd Electrotechniczny, 1 (7), 130–133. https://doi.org/10.15199/48.2016.07.28
10. Hamming R. (2012) Numerical Methods for Scientists and Engineers. 2nd Ed. New York, Dover Publications. 721.
11. Evans F. J., Wells G. (1970) Use of a Sampling Scheme to Detect Transient Saturation in Protective Current Transformers. IEEE Transactions on Instrumentation and Measurement, 19 (3), 144–147. https://doi.org/10.1109/TIM.1970.4313884
12. Yang L., Dolloff P. A., Phadke A. G. (1990) A Microprocessor Based Bus Relay Using a Current Transformer Saturation Detector. Proceedings of the Twenty-Second Annual North American Power Symposium. Auburn, AL, USA, 193–202. https://doi.org/10.1109/NAPS.1990.151372
13. Phadke A. G., Thorp J. S. (2009) Computer Relaying for Power Systems. 2nd Ed. Hertfordshire– Chichester, Research Studies Press Limited and John Wiley & Sons. 344. https://doi.org/10.1002/9780470749722
14. Kang Y. C., Ok S. H., Kang S. H. (2004) A CT Saturation Detection Algorithm. IEEE Transactions on Power Delivery, 19 (1), 78–85. https://doi.org/10.1109/TPWRD.2003.820200
15. Kang Y. C., Ok S. H., Kang S. H. (2001) A Novel CT Saturation Detecting Algorithm Unaffected by a Remanent Flux. 2001 Power Engineering Society Summer Meeting. Conference Proceedings, (Cat. No.01CH37262), 1324–1327. https://doi.org/10.1109/PESS.2001.970268
16. Schettino B. M., Duque C. A., Silveira P. M., Ribeiro P. F., Cerqueira A. S. (2014) A New Method of Current-Transformer Saturation Detection in the Presence of Noise. IEEE Transactions on Power Delivery, 29 (4), 1760–1767. https://doi.org/10.1109/TPWRD.2013.2294079
17. Schettino B. M., Duque C. A., Silveira P. M. (2016) Current-Transformer Saturation Detection Using Savitzky – Golay Filter. IEEE Transactions on Power Delivery, 31 (3), 1400–1401. https://doi.org/10.1109/tpwrd.2016.2521327
18. Chothani N. G., Bhalja B. R. (2014) New Algorithm for Current Transformer Saturation Detection and Compensation Based on Derivatives of Secondary Currents and Newton's Backward Difference Formulae. IET Generation, Transmission & Distribution, 8 (5), 841–850. https://doi.org/10.1049/iet-gtd.2013.0324
19. Dos Santos E. M., Cardoso G., Farias P. E., De Morais A. P. (2012) CT Saturation Detection Based on the Distance between Consecutive Points in the Plans Formed by the Secondary Current Samples and their Difference-Functions. IEEE Transactions on Power Delivery, 28 (1), 29–37. https://doi.org/10.1109/TPWRD.2012.2220382
20. Kumar K., Kumbhar G. B., Mahajan S. (2016) A New Efficient Algorithm to Detect Current Transformer Saturation. 2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, 1–5. https://doi.org/10.1109/PESGM.2016.7741583
21. Kasztenny B., Rosolowski E., Lukowicz M., Izykowski J. (1997) Current Related Relaying Algorithms Immune to Saturation of Current Transformers. Sixth International Conference on Developments in Power System Protection. Nottingham, Publication No. 434, 365–368. https://doi.org/10.1049/cp:19970100
22. Biswal S., Biswal M. (2019) Detection of Current Transformer Saturation Phenomenon for Secured Operation of Smart Power Network. Electric Power Systems Research, 175, 105926. https://doi.org/10.1016/j.epsr.2019.105926
23. Wiszniewski A., Rebizant W., Schiel L. (2008) Correction of Current Transformer Transient Performance. IEEE Transactions on Power Delivery, 23 (2), 624–632. https://doi.org/10.1109/tpwrd.2008.915832
24. Allain R., Jean P. (2003) Method for Detecting Saturation in a Current Transformer. Patent No US10/502,855.
25. Distributed Busbar Protection REB500. Application Manual. Available at: https://library.e.abb.com/public/e351d17bb0bf42938f2323a4395b5eea/1MRK505333-UEN_-_en_Application_Manual__REB500_8.10__IEC.pdf.
26. Saha M. (1992) Method and Device for Detecting Saturation in Current Transformers. Patent No EP0506035B1.
27. Easergy MiCOM P740 Differential Busbar Protection Relay, SW Version B1, Manual (Global File) P740/EN M/Qd9. Available at: https://www.se.com/ww/en/download/document/P74x_EN_M_Qd9__B1_LM/
28. Ziegler G. (2012) Numerical Differential Protection: Principles and Applications. 2nd Ed. Erlangen, John Wiley & Sons. 287.
29. Benmouyal G., Zocholl S. E., Guzman-Casillas A. (2004) Instantaneous Overcurrent Element for Heavily Saturated Current in a Power System. Patent No US6757146 B2.
30. Rebizant W., Wiszniewski A., Schiel L. (2008) CT Saturation Correction Based on the Estimated CT Saturation Time Constant. 2008 IET 9th International Conference on Developments in Power System Protection (DPSP 2008), 174–179. https://doi.org/10.1049/cp:20080031
31. Ribeiro P. F., Duque C. A., Ribeiro P. M., Cerqueira A. S. (2013) Power Systems Signal Processing for Smart Grids. Chichester, John Wiley & Sons. 448. https://doi.org/10.1002/9781118639283
32. Wu Q. H., Lu Z., Ji T. (2009) Protective Relaying of Power Systems Using Mathematical Morphology. London - New York, Springer Science & Business Media. 207. https://doi.org/10.1007/978-1-84882-499-7
33. Rebizant W., Szafran J., Wiszniewski A. (2011) Digital Signal Processing in Power System Protection and Control. London, Springer Publ. 316. https://doi.org/10.1007/978-0-85729-802-7
34. Ali M., Son D. H., Kang S. H., Nam S. R. (2017) An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy. Energies, 10 (11), 1830. https://doi.org/10.3390/en10111830
35. Dabney J. B., Harman T. L. (2004). Mastering Simulink. Upper Saddle River: Pearson/Prentice Hall. 376.
36. Neural Network Toolbox. User’s Guide. Version 4. The MathWorks, 2002. Available at: http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf
37. SimPowerSystems. User’s Guide. Version 5. The MathWorks, 2011. Available at: https://guidessimo.com/document/558673/matlab-simpowersystems-5-operation-user-s-manual-403.html
38. Novash I. V., Rumiantsev Yu. V. (2015) A Simplified Model of Three-Phase Bank of Current Transformers in the Dynamic Simulation System. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, (5), 23–38 (in Russian).
39. Hagan M. Т., Demuth H. B., Beale M. H., De Jesus O. (2014) Neural Network Design. 2nd ed. Boston, PWS Publishing. 1012.
40. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2016) Digital Filters Implementation in Microprocessor-Based Relay Protection. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 59 (5), 397–417 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-5-397-417
41. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2017) Current Measurement Element for Operation during Current Transformer Magnetic Core Severe Saturation. Patent BY No 20808 C1 (in Russian).
42. Novash I. V., Romaniuk F. A., Rumiantsev V. Yu., Rumiantsev Yu. V. (2021) Microprocessor-Based Overcurrent Relay Protection Devices: Theory, Modeling, Practices. Minsk, Belarusian National Technical University. 168 (in Russian).
Review
For citations:
Rumiantsev Yu.V. Current Transformer Saturation Detection Method Based on Artificial Neural Network. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2023;66(3):233-245. https://doi.org/10.21122/1029-7448-2023-66-3-233-245