On the Problem of Arrangement of Hybrid Energy Storage Systems
https://doi.org/10.21122/1029-7448-2023-66-3-215-232
Abstract
. Electric energy storage systems are widely used in electric transport, power engineering and in order to provide autonomous power supply and load regulation of power systems. One of the ways to increase the technical and economic efficiency of storage devices is their hybridization, i. e. the creation of storage devices consisting of blocks of different types of batteries. The special literature contains no systematic analysis of qualitative and quantitative effects of hybridization and corresponding methodological recommendations for choosing a scheme and evaluating the effectiveness of hybridization. In the present article, this issue is considered from a theoretical and methodological standpoint, recommendations are given for the design of storage devices serving solar or low-power wind farms. A brief overview of data on the cost of buffering electricity with lithium-ion, lead-acid batteries and supercapacitors is made. A method is proposed for determining the necessity and degree of hybridization of an energy storage device based on the simplest dependencies of the storage parameters on the degree of hybridization. The notions of the coefficient of synergetic effect of hybridization and the degree of internal buffering of electricity are introduced. A quantitative-and-qualitative model for evaluating the effectiveness of hybridization is presented. A methodological approach is proposed for calculating the degree of internal recovery and evaluating the coefficient of synergetic effect of hybridization. It is shown that, in general, the adding of supercapacitor unit to lithium-ion batteries a does not lead to a reduction in the cost of buffering electricity due to the high ratio of the cost of buffering with a supercapacitor to the cost of buffering with lithium-ion batteries. At the same time, the economic feasibility of using supercapacitors to compensate for high pulse loads can be determined on basis of the analysis of the frequency spectrum of the load graph of the storage unit. The developed models and approaches can be used in the design of electrochemical energy storage systems for specified operating conditions.
About the Author
K. V. DobregoBelarus
Address for correspondence:
Dobrego Kirill V.–
Belаrusian National Technical University,
65/2, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus.
Tel.: +375 17 368-11-57
kirilldobrego@gmail.com
References
1. Experts: the Global Energy Storage Market will Grow by 23% per Year until 2030. National Association of Oil and Gas Service (2021). Available at: https://nangs.org/news/renewables/eksperty-mirovoy-rynok-nakopiteley-energii-do-2030-goda-budet-rasti-na-23-v-god (accessed 20 May 2022) (in Russian).
2. Mongird K., Viswanathan V., Alam J., Vartanian Ch., Sprenkle V., Richard Baxter R. (2020) Grid Energy Storage Technology Cost and Performance Assessment: Technical Report Publication No. DOE/PA-0204, December 2020. https://www.pnnl.gov/sites/default/files/media/file/Final%20-%20ESGC%20Cost%20Performance%20Report%2012-11-2020.pdf.
3. Dobrego K. V., Bladyko V. V. (2021) Modeling of Batteries and their Assemblies Taking Into Account the Degradation of Parameters. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edenenii SNG = Energetika. Proceedings of the CIS Higher Educati-onal Institutions and Power Engineering Associations, 64 (1), 27–39. https://doi.org/10.21122/1029-7448-2021-64-1-27-39 (in Russian).
4. Dhar S. K., Albano F., Venkatesan S., Townsend D. (2014) Hybrid Battery System for Electric and Hybrid Electric Vehicles. Patent No US2014016659A1.
5. Conte M., Genovese A., Ortenzi F., Vellucci F. (2014) Hybrid Battery-Supercapacitor Storage for an Electric Forklift: a Life-Cycle Cost Assessment. Journal of Applied Electrochemistry, 44, 523–532. https://doi.org/10.1007/s10800-014-0669-z.
6. Bondarenko Yu. V., Safronov P. S., Bondarenko O. F., Sidorets V. M., Rogozina T. S. (2014) The Hybrid Energy Storages Based on Batteries and Ultracapacitors for Contact Micro-welding. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, (4), 33–38 (in Russian).
7. Berdnikov R. N., Fortov V. E., Son E. E., Den'shchikov K. K., Zhuk A. Z., Novikov N. L., Shakaryan Yu. G. (2013) Hybrid Electric Power Storage for UNEG Based on Batteries and Supercapacitors. Energiya Edinoi Seti [Unified Grid Energy], (2), 40–51 (in Russian).
8. New High-Performance Lithium LiFePO4 Cells. Available at: https://www.powertechsystems.eu/new-high-performance-lithium-lifepo4-cells/ (accessed 10 December 2022).
9. Dobrego K. V., Koznacheev I. A. (2022) Universal Simulation Model of Battery Degradation with Optimization of Parameters by Genetic Algorithm. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edenenii SNG = Energetika. Proceedings of the CIS Higher Educational Institutions and Power Engineering Associations, 65 (6), 481–498. https://doi.org/10.21122/1029-7448-2022-65-6-481-498 (in Russian).
10. 16 Volt Smart Module. Available at: https://maxwell.com/wp-content/uploads/2021/08/3003212.2_Datasheet_BMOD0058-E016-C02.pdf (аccessed 12 November 2022).
11. BMOD0058 E016 C02. Mouser Electronics. Available at: https://eu.mouser.com/ProductDetail/Maxwell-Technologies/BMOD0058-E016-C02?qs=W%2FMpXkg%252BdQ772gmnfQLCEw%3D%3D (аccessed 12 November 2022).
12. NEW 48V MODULE (C0B) // Maxwell Technologies Datasheet. Available at: https://max well.com/wp-content/uploads/2021/12/48V_ds_C0B_3001491-EN.6_20210713.pdf (аcces-sed 12 November 2022).
13. Maxwell Ultra Capacitor 165F 48V 53Wh BMOD0165 P048 C0B 165 Farad 48VDC DuraBlue. EBAY. Available at: https://www.ebay.com/itm/392705837809 (аccessed 12 November 2022).
14. XLR-48 Supercapacitor 48 V, 166 F Rugged Module. Available at: https://www.eaton.com/content/dam/eaton/products/electronic-components/resources/data-sheet/eaton-xlr-48-supercapacitor-module-data-sheet.pdf (аccessed 12 November 2022).
15. XLR-48R6167-R. Mouser Electronics [Electronic Resource]. Available at: https://eu.mouser.com/ProductDetail/PowerStor-Eaton/XLR-48R6167-R?qs=NtE2QagKf6SSazGy%2F3UkQA%3D%3D (accessed 12 November 2022).
16. XLR-51 Supercapacitor 51 V, 188 F Rugged Module. Available at: https://www.eaton.com/content/dam/eaton/products/electronic-components/resources/data-sheet/eaton-xlr-51-supercapacitor-module-data-sheet.pdf (accessed 12 November 2022).
17. XLR-51R3187-R Supercapacitor, Module, 188 F, 51.3 V, Screw, 0%, +20%, 1500 hours @ 65°C. Newark. Available at: https://www.newark.com/eaton-bussmann/xlr-51r3187-r/supercapacitor-188f-51-3v-screw/dp/84AC4633 (accessed 12 November 2022).
18. MCP0165C0-0048R0SHC. Available at: https://spscap.de/fileadmin/Webdata/public/datenblaetter/Module/SPS_Data_sheet-MCP0165C0-0048R0SHC-V06_E.pdf (accessed 12 November 2022).
19. MCP0165C0-0048R0SHC – Super Capacitor, 165F, 48V, SPSCAP. Distrelec. Available at: https://www.distrelec.de/en/super-capacitor-165f-48v-spscap-mcp0165c0-0048r0shc/p/30176484 (accessed 12 November 2022).
20. DataSheet 48V Module MCP0083C0-0048R0SHC. Available at: https://www.capcomp.de/fileadmin/Webdata/partner/SPSCAP/Datasheet_module/SPS_48V83F_20160725101337351.pdf (accessed 12 November 2022).
21. MDCL0083C0-0048R0SHC – Super Capacitor, 83F, 48V, SPSCAP. Distrelec. Available at: https://www.distrelec.biz/en/super-capacitor-83f-48v-spscap-mdcl0083c0-0048r0shc/p/30294986?trackQuery=&pos=9&origPos=9&origPageSize=50 (accessed 12 November 2022).
22. 48V SCM Series Series-Connected SuperCapacitor Modules SCMZ1EP167SRBB0. Available at: https://datasheets.kyocera-avx.com/AVX-SCM-48V.pdf (accessed 12 November 2022).
23. SCMZ1EP167SRBB0. Mouser Electronics. Available at: https://eu.mouser.com/ProductDetail/KYOCERA-AVX/SCMZ1EP167SRBB0?qs=r5DSvlrkXmIA4886fky0Vw%3D%3D (accessed 12 November 2022).
24. 48V SCM Series Series-Connected SuperCapacitor Modules. Access mode: https://eu.mouser.com/datasheet/2/40/AVX_SCM_48V-1648423.pdf. (accessed 12 November 2022).
25. SCMZ1EK507SRBB0. Mouser Electronics. Available at: https://eu.mouser.com/ProductDetail/KYOCERA-AVX/SCMZ1EK507SRBB0?qs=P1JMDcb91o7PmsKd3ItCnQ%3D%3D (accessed 12 November 2022).
26. CAPMOD Specifications. Available at: https://www.cap-xx.com/wp-content/uploads/2022/07/CAPmod-Data-Sheet-07-06-22.pdf (accessed 12 November 2022).
27. CAPMOD064V083A23. 64V, 83F, ESR 6.8mΩ 457x147x224 mm Datasheet. Available at: https://www.cap-xx.com/product/capmod064v083a23/ (accessed 12 November 2022).
28. CAPMOD080V100A23. 80V, 100F, ESR 7.8mΩ 741x147x224 mm Datasheet. Available at: https://www.cap-xx.com/product/capmod080v100a23/ (accessed 12 November 2022).
29. CAPMOD032V250A23. 32V, 250F, ESR 3.4mΩ 309x147x224 mm Datasheet. Available at: https://www.cap-xx.com/product/capmod032v250a23/ (accessed 12 November 2022).
30. XLR-16 Supercapacitor 16.2 V, 500 F Module. (Technical Data 10945). Available at: https:// www.eaton.com/content/dam/eaton/products/electronic-components/resources/data-sheet/eaton-xlr-16-supercapacitor-module-data-sheet.pdf (accessed 12 November 2022).
31. XLR-16R2507-R. Mouser Electronics. Available at: https://eu.mouser.com/ProductDetail/PowerStor-Eaton/XLR-16R2507-R?qs=BJlw7L4Cy78HoKwcukr%252B2w%3D%3D (acces-sed 12 November 2022).
Review
For citations:
Dobrego K.V. On the Problem of Arrangement of Hybrid Energy Storage Systems. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2023;66(3):215-232. (In Russ.) https://doi.org/10.21122/1029-7448-2023-66-3-215-232