Reference Input Signals Formation for Induction Motor Control in Traction Drive
https://doi.org/10.21122/1029-7448-2023-66-3-205-214
Abstract
The purpose of this work is to build the analytical improved (with resistances estimation) real time computation of the reference inputs for rotor flux and torque in the vector control system of an induction motor of a traction electric drive. The reference inputs must maximize electromagnetic torque in conditions of voltage source instability, particularly in magnetic field weakening mode. The conventional way to control the field weakening mode is to form flux coupling task inversely proportional to the speed or inversely proportional to the square of the speed in second and third zones respectively. Such reference input signals are not able to provide the maximum torque capability over the entire speed range, and the improved torque capability is achieved in different ways. For instance, voltage feedback is useful for the torque capability enhancement in conditions of internal and external perturbations. A wide change in speed with the weakening of the flux reveals the nonlinear properties of an induction electric motor. However, in vector control systems, proportional-integrating (PI) regulators are usually used. Therefore, firstly, linear PI controllers must be robust, and secondly, the reference input signals for flux and torque must guaranty linear, not saturated state of each PI controller. The proposed expressions for calculating reference inputs for induction motor rotor flux and electromagnetic torque as functions of actual rotor speed are the approximate expressions. The estimation of the possible error shows that the error is acceptable. Simulation is performed for the vector control system of an induction motor and taking into account the calculation of the control signal by the microcontroller and the dynamics of the frequency invertor. The simulation of the resulting system validates the effectiveness of the control system using the proposed expressions for the formation of real-time reference input signals for setting the flux and torque.
About the Author
O. F. OpeikoBelarus
Address for correspondence:
Opeiko Olga F. –
Belаrusian National Technical University,
65, Nezavisimosty Ave., 220013, Minsk, Republic of Belarus
Tel.: +375 17 293-95-61
oopeiko@bntu.byy
References
1. Blaschke F. (1972) Das Verfahren der Feldorientierung zur Regelung der Asynchronmaschine. Siemens-Forsch und Entwicklungsber, (1), 184–193 (in German).
2. Firago B. I., Vasiliev D. S. (2016) Vector Control Systems for Electric Drive. Minsk, Vys-heishaya Shkola Publ. 159 (in Russian).
3. Opeiko O. F., Ptashnik A. I., Khilmon V. I. (2010) Tractional Electric Drive with Non-Sensing Element Vector Control System. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energet-icheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, (6), 37–43 (in Russian).
4. Opeiko O. F. (2022) Synthesis Based on Linearization of Vector Speed Control of an Induction Motor without a Speed Sensor. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energet-icheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (2), 103–114 (in Russian). https://doi.org/10.21122/1029-7448-2022-65-2-103-114
5. Xu X., Novotny D. W. (1992) Selection of the Flux Reference for Induction Machine Drives in the Field Weakening Region. IEEE Transactions on Industry Applications, 28 (6), 1353–1358. https://doi.org/10.1109/28.175288
6. Kim S. H., Sul S. K. (1995) Maximum Torque Control of an Induction Machine in the Field Weakening Region. IEEE Transactions on Industry Applications, 31 (4), 787–794. https://doi.org/10.1109/28.395288
7. Gallegos-López G., Gunawan F. S., Walters J. E. (2007) Current Control of Induction Machines in the Field-Weakened Region. IEEE Transactions on Industry Applications, 43 (4), 981–989. https://doi.org/10.1109/TIA.2007.900459
8. Mengoni M., Zarri L., Tani A., Serra G, Casadei D. (2008) Stator Flux Vector Control of Induc-tion Motor Drive in the Field Weakening Region. IEEE Transactions on Power Electronics, 23 (2), 941–948. https://doi.org/10.1109/TPEL.2007.915636
9. Lin P.-Y., Lai Y.-S. (2011) Novel Voltage Trajectory Control for Field-Weakening Operation of Induction Motor Drives. IEEE Transactions on Industry Applications, 47 (1), 112–127. https://doi.org/10.1109/TIA.2010.2091092
10. Kim S. H., Sul S. K. (1997) Voltage Control Strategy for Maximum Torque Operation of an Induction Machine in the Field-Weakening Region. IEEE Transactions on Industrial Electron-ics, 44 (4), 512–518. https://doi.org/10.1109/41.605628
11. Casadei D., Mengoni M., Serra G., Tani A., Zarri L. (2010) A Control Scheme with Energy Saving and DC-Link Overvoltage Rejection for Induction Motor Drives of Electric Vehicles. IEEE Transactions on Industry Applications, 46 (4), 1436–1446. https://doi.org/10.1109/TIA.2010.2049627
12. Mengoni M., Zarri L., Tani A., Serra G., Casadei D. (2012) A Comparison of Four Robust Control Schemes for Field-Weakening Operation of Induction Motors. IEEE Transactions on Power Electronics, 27 (1), 307–320. https://doi.org/10.1109/TPEL.2011.2156810
13. Seok J.-K., Kim S. H. (2015) Hexagon Voltage Manipulating Control (HVMC) for AC Motor Drives Operating at Voltage Limit. IEEE Transactions on Industry Applications, 51 (5), 3829–3837. https://doi.org/10.1109/TIA.2015.2416125
14. Sahoo S. K., Bhattacharya T. (2016) Field Weakening Strategy for a Vector-Controlled Induc-tion Motor Drive Near the Six-Step Mode of Operation. IEEE Transactions on Power Electron-ics, 31 (4), 3043–3051. https://doi.org/10.1109/TPEL.2015.2451694
15. Su J., Gao R., Husain I. (2018) Model Predictive Control Based Field-Weakening Strategy for Traction EV Used Induction Motor. IEEE Transactions on Industry Applications, 54 (3), 2295–2304. https://doi.org/10.1109/TIA.2017.2787994
16. Dong Z., Yu Y., Li W., Wang B., Xu D. (2018) Flux-Weakening Control for Induction Motor in Voltage Extension Region: Torque Analysis and Dynamic Performance Improvement. IEEE Transactions on Industrial Electronics, 65 (5), 3740–3751. https://doi.org/10.1109/TIE.2017.2764853
17. Xu Y., Morito C. Lorenz R. D. (2019) Extending High-Speed Operating Range of Induction Machine Drives Using Deadbeat-Direct Torque and Flux Control with Precise Flux Weakening. IEEE Transactions on Industry Applications, 55 (4), 3770–3780. https://doi.org/10.1109/TIA.2019.2908342
18. Wang B., Zhang X., Yu Y., Zhang J., Xu D. B. (2019) Maximum Torque Analysis and Exten-sion in Six-Step Mode-Combined Field-Weakening Control for Induction Motor Drives. IEEE Transactions on Industrial Electronics, 66 (12), 9129–9138. https://doi.org/10.1109/TIE.2018.2889622
19. Dong Z., Wang B., Yu Y., Zhang X., Zhang J., Xu D., Ding Z. (2019) Operating Point Selected Flux-Weakening Control of Induction Motor for Torque-Improved High-Speed Operation Un-der Multiple Working Conditions. IEEE Transactions on Power Electronics, 34 (12), 12011–12023. https://doi.org/10.1109/TPEL.2019.2905536
20. Peng Z. (2020) Analysis and Implementation of Constrained MTPA Criterion for Induction Machine Drives. IEEE Access, 8, 176445–176453. https://doi.org/10.1109/ACCESS.2020.3024195
21. Zhang X., Wang B., Yu Y, Zhang J., Dong J., Xu D., (2020) Analysis and Optimization of Current Dynamic Control in Induction Motor Field-Weakening Region. IEEE Transactions on Power Electronics, 35 (9), 8860–8866. https://doi.org/10.1109/TPEL.2020.2968978
22. Tarvirdilu-Asl R., Nalakath S., Xia Z., Sun Y, Wiseman J., Emadi A. (2020) Improved Online Optimization-Based Optimal Tracking Control Method for Induction Motor Drives. IEEE Transactions on Power Electronics, 35 (10), 10654–10672. https://doi.org/10.1109/TPEL.2020.2976037
23. Zhang X. Wang B., Yu Y, Zhang J., Dong J., Xu D. (2021) Circular Arc Voltage Trajectory Method for Smooth Transition in Induction Motor Field-Weakening Control. IEEE Transac-tions on Industrial Electronics, 68 (5), 3693–3706. https://doi.org/10.1109/TIE.2020.2988190
24. Harikrishnan P., Hatua K., Rao S. E. (2022) A Quick Dynamic Torque Control for an Induction-Machine-Based Traction Drive During Square-Wave Mode of Operation. IEEE Transactions on Industrial Electronics, 69 (7), 6519–6529. https://doi.org/10.1109/TIE.2021.3095805
25. Dordea T., Hoancă V., Păun Ş. Biriescu M., Madescu G., Liuba G., Moţ M. (2011) Direct-Drive Induction Motor for Railway Traction Applications. Proceedings of the Romanian Acad-emy, Series A, 12 (3), 239–248.
26. Popescu M., A. Bitoleanu A., Dobriceanu M., Goreci L. (2019) Optimal Control Method of an Asynchronous Traction Motor. 11th International Symposium on Advanced Topics in Electrical Engineering, March 28–30, 2019 Bucharest, Romania. https://doi.org/10.1109/ATEE.2019.8724969
27. Zhao N., Schofield N. (2020) An Induction Machine Design With Parameter Optimization for a 120 kW Electric Vehicle. IEEE Transactions on Transportation Electrification, 6 (2), 592–601. https://doi.org/10.1109/TTE.2020.2993456
28. Xie F., Hong W., Wu W., Liang K., Qiu C. (2019) Current Distribution Method of Induction Motor for Electric Vehicle in Whole Speed Range Based on Gaussian Process. IEEE Access, 7 (13), 165974–165984. https://doi.org/10.1109/ACCESS.2019.2953293.
29. Brandstetter P., Kuchar M. (2017) Sensorless Control of Variable Speed Induction Motor Drive Using RBF Neural Network. Journal of Applied Logic, 24 (Part A), 97–108. https://doi.org/10.1016/j.jal.2016.11.017
30. Odnolko D. S. (2013) Algorithm for Identification Electromagnetic Parameters of an Induction Motor When Running on a Three-Phase Power Plant. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Educa-tion Institutions and Power Engineering Associations, (1), 47–55 (in Russian).
31. Adnolka D. (2013) Algorithm for Parametric Identification of Induction Motors and Its Experi-mental Testing. Vіsnik Kremenchuts'kogo natsіonal'nogo unіversitetu іmenі Mikhaila Ostro-grads'kogo = Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, (4), 9–14 (in Russian).
32. Tytiuk V. K., Baranovskaya M. L., Chornyi O. P., Burdilnaya E. V., Kuznetsov V. V., Bo-gatyriov K. N. (2020) Online-Identification of Electromagnetic Parameters of an Induction Mo-tor. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associa-tions, 63 (5), 423–440. https://doi.org/10.21122/1029-7448-2020-63-5-423-440
Review
For citations:
Opeiko O.F. Reference Input Signals Formation for Induction Motor Control in Traction Drive. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2023;66(3):205-214. https://doi.org/10.21122/1029-7448-2023-66-3-205-214