Preview

Analysis of Hydrogen Use in Gas Turbine Plants

https://doi.org/10.21122/1029-7448-2023-66-2-158-168

Abstract

Improvement of the efficiency of modern power systems requires the development of storage technologies, optimization of operation modes, and increased flexibility. Currently, various technical solutions are used for electricity storage. The results of a literary review with an analysis of existing energy storage systems are presented, their advantages and disadvantages are considered. One of the promising solutions is the use of hydrogen as an energy storage medium. The creation of corresponding energy complexes makes it possible to obtain hydrogen by electrolysis of water, and then use it to cover peak loads. Various schemes with hydrogen-fired gas turbines with a pressure up to 35 MPa and a temperature of 1500–1700 °C were considered. The new scheme of power plant with hydrogen-fired gas turbines was synthesized, which includes a power block, hydrogen generation blocks and hydrogen and oxygen preparation unit for burning. An atmospheric electrolyzer was considered as a hydrogen and oxygen generator. For the proposed scheme, parametric optimization was performed, where the storage efficiency factor has been used as a criterion. The influence of inlet temperature in the combustion chamber, the compression rate of hydrogen and oxygen, as well as the specific energy costs of the electrolyzer were analyzed. The results of the numerical experiment were approximated in the form of polynomial dependencies, and can be used in further research on the economic efficiency of proposed power plant.

About the Authors

V. A. Sednin
Belarusian National Technical University
Belarus

Minsk



A. V. Sednin
Belarusian National Technical University
Belarus

Address for correspondence:
Sednin Alexei V. –
Belarusian National Technical University,
65, Nezavistimosti Ave.
220013, Minsk, Republic of Belarus.
Tel.: +375 17 397-36-20
Sednin@bntu.by 



A. A. Matsyavin
Belarusian National Technical University
Belarus

Minsk



References

1. Schaaf T., Grünig J., Schuster M. R., Rothenfluh T., Orth A. (2014) Methanation of CO2 – Storage of Renewable Energy in a Gas Distribution System. Energy, Sustainability and Society 4 (2), https://doi.org/10.1186/s13705-014-0029-1.

2. da Silva Veras T., Mozer T. S., da Costa Rubim Messeder dos Santos D., da Silva César A. (2017) Hydrogen: Trends, Production and Characterization of the Main Process Worldwide. International Journal of Hydrogen Energy, 42 (4), 2018–2033. https://doi.org/10.1016/j.ijhydene.2016.08.219.

3. Zhang S., Zhu Z., Li Y. (2021) A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges. Energies, 14 (21), 7238. https://doi.org/10.3390/en14217238.

4. Luo J., Zou Y., Bu S., Karaagac U. (2021) Converter-Driven Stability Analysis of Power Systems Integrated with Hybrid Renewable Energy Sources. Energies, 14 (14), 4290. https://doi.org/10.3390/en14144290.

5. Bezhan A. V. (2022) Efficiency Estimation of Constructing of Wind Power Plant for the Heat Supply Needs. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (4), 366–380. https://doi.org/10.21122/1029-7448-2022-65-4-366-380 (in Russian).

6. Babatunde O. M., Munda J. L., Hamam Y. (2020) Power System Flexibility: A Review. Energy Reports, 6 (2), 101–106. https://doi.org/10.1016/j.egyr.2019.11.048.

7. Zarco-Soto F. J., Zarco-Periñán P. J., Martínez-Ramos J. L. (2021) Centralized Control of Distribution Networks with High Penetration of Renewable Energies. Energies, 14 (14), 4283. https://doi.org/10.3390/en14144283.

8. Szablicki M., Rzepka P., Halinka A. (2021) Simulation Verification of Overcurrent Protection Operation in Power Networks Integrating Renewable Energy Sources in Energy Communities. Energies, 14 (8), 2193. https://doi.org/10.3390/en14082193.

9. Electricity Production by Source, World. Our World in Data. Available at: https://ourworldindata.org/grapher/electricity-prod-source-stacked (accessed 27 February 2023).

10. Electricity Storage Technology Review. Prepared for U.S. Department of Energy. Office of Fossil Energy. June 30, 2020. Available at: https://www.energy.gov/sites/default/files/2020/10/f79/Electricity%20Storage%20Technologies%20%20Report.pdf (accessed 27 February 2023).

11. Schröter T., Richter A., Götze J., Naumann A., Gronau J., Wolter M. (2020) Substation Related Forecasts of Electrical Energy Storage Systems: Transmission System Operator Requirements. Energies, 13 (23), 6207. https://doi.org/10.3390/en13236207.

12. Frate G. F., Ferrari L., Desideri U. (2020) Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review. Energies, 13 (18), 4766. https://doi.org/10.3390/en13184766.

13. Behabtu H. A., Messagie M., Coosemans T., Berecibar M., Fante K. A., Kebede A. A., Van Mierlo J. (2020) A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability, 12 (24), 10511. https://doi.org/10.3390/su122410511.

14. Hernandez D. D., Gençer E. (2021) Techno-Economic Analysis of Balancing California’s Power System on a Seasonal Basis: Hydrogen vs. Lithium-Ion Batteries. Applied Energy, 300, https://doi.org/10.1016/j.apenergy.2021.117314.

15. Technology Data. Energy Storage. Available at: https://ens.dk/sites/ens.dk/files/Analyser/technology_data_catalogue_for_energy_storage.pdf (accessed 27 February 2023).

16. Sednin V. A., Ivanchikov E. O., Kaliy V. A., Martinchuk A. Y. (2022) Energy-and-Technology Installation Based on a Rolling Mill Heating Furnace with the Option of Hydrogen Production. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (2), 127–142. https://doi.org/10.21122/1029-7448-2022-65-2127-142 (in Russian).

17. Wulf C., Linssen J., Zapp P. (2018) Chapter 9 – Power-to-Gas-Concepts, Demonstration, and Prospects. Hydrogen Supply Chain: Design, Deployment and Operation. Academic Press, 309–345. https://doi.org/10.1016/B978-0-12-811197-0.00009-9.

18. Chiesa P., Lozza G., Mazzocchi L. (2005) Using Hydrogen as Gas Turbine Fuel. Journal of Engineering for Gas Turbines and Power, 127 (1), 73–80. https://doi.org/10.1115/1.1787513.

19. Ditaranto M., Heggset T., Berstad D. (2020) Concept of Hydrogen Fired Gas Turbine Cycle with Exhaust Gas Recirculation: Assessment of Process Performance. Energy, 192 (1), https://doi.org/10.1016/j.energy.2019.116646.

20. Du Toit M. H., Avdeenkov A. V., Bessarabov D. (2018) Reviewing H2 Combustion: A Case Study for Non-Fuel-Cell Power Systems and Safety in Passive Autocatalytic Recombiners. Energy and Fuels, 32 (6), 6401–6422. https://doi.org/10.1021/acs.energyfuels.8b00724.

21. Aminov R. Z., Bairamov A. N., Garievskii M. V. (2020) Estimating the System Efficiency of the Multifunctional Hydrogen Complex at Nuclear Power Plants. International Journal of Nydrogen Energy, 45 (29), 14614–14624. https://doi.org/10.1016/j.ijhydene.2020.03.187.

22. Aminov R. Z., Bairamov A. N., Garievskii M. V. (2019) Assessment of the Performance of a Nuclear-Hydrogen Power Generation System. Thermal Engineering, 66, 196–209. https://doi.org/10.1134/S0040601519030017.

23. Milewski J., Badyda K., Miller A. (2012) Gas Turbines in Unconventional Applications. Volkov K. (ed.). Efficiency, Performance and Robustness of Gas Turbines, 121–164. https://doi.org/10.5772/37321.

24. Jericha H. (1987) Efficient Steam Cycles with Internal Combustion of Hydrogen and Stoichiometric Oxygen for Turbines and Piston Engines. International Journal of Hydrogen Energy, 12 (5), 345–354. https://doi.org/10.1016/0360-3199(87)90060-7.

25. Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Available at: http://twt.mpei.ac.ru/mcs/worksheets/iapws/IAPWS95.xmcd (accessed 27 February 2023).


Review

For citations:


Sednin V.A., Sednin A.V., Matsyavin A.A. Analysis of Hydrogen Use in Gas Turbine Plants. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2023;66(2):158-168. https://doi.org/10.21122/1029-7448-2023-66-2-158-168

Views: 707


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)