Тепловой и материальный баланс гелиопиролизного устройства
https://doi.org/10.21122/1029-7448-2023-66-1-57-65
Аннотация
. Предложена технологическая схема процесса получения альтернативного топлива из местной биомассы методом гелиопиролиза. Проанализированы температурный режим в реакторе пиролизной установки, экономия тепловой энергии, расходуемой на конкретные нужды оборудования, а также тепловая производительность установки. Снижение энергопотребления в технологии пиролиза является серьезной проблемой. Это связано с необходимостью подвода энергии (теплоты) для поддержания температурного режима реактора, дополнительного нагрева биомассы, а также особенностями процесса разложения отходов, для которого требуется очень большая тепловая энергия. Обычно пиролиз осуществляется за счет потребления угля, природного газа или электроэнергии. В статье предложено использовать для обогрева пиролизного реактора гелиопиролизную систему с параболо-цилиндрическим солнечным концентратором, что позволяет достичь температуры 400–700 °C. Разработана принципиальная схема экспериментальной пиролизной установки солнечного концентратора и получены образцы альтернативных топлив. Так, термическая переработка стеблей хлопчатника дала около 20 % пирогаза, 60 % жидкого топлива, 8–20 % твердого альтернативного топлива при загрузке исходной биомассы 3,76 кг. Рассмотрен тепловой и материальный баланс установки. Показано, что применение солнечного концентратора позволяет уменьшить удельные энергозатраты на процесс пиролиза до 30 %. Предложенная гелиопиролизная установка снижает расход тепловой энергии на собственные нужды, повышает общий коэффициент полезного действия и обеспечивает стабильный температурный режим пиролиза.
Об авторах
Г. Н. УзаковУзбекистан
г. Карши
А. В. Новик
Беларусь
Минск
Х. А. Давлонов
Узбекистан
г. Карши
Х. А. Алмарданов
Узбекистан
Адрес для переписки
Алмарданов Хамидилла Абдиганиевич –
Каршинский инженерно-экономический институт просп. Мустакиллик, 225,
180100, г. Карши, Республика Узбекистан
Тел.: +998 90 428-81-91
hamid_8191@mail.ru
С. Э. Чулиев
Узбекистан
г. Карши
Список литературы
1. Fuel and Energy Balance of the Republic of Uzbekistan. The State Committee of the Republic of Uzbekistan on Statistics. Avalible at: https://www.stat.uz/uz/rasmiy-statistika/industry-2.
2. On the Program of Measures for Further Development of Renewable Energy, Energy Efficiency in the Economy and Social Spheres in 2017–2021: Resolution of the President of the Republic of Uzbekistan, May 26, 2017, No PD-3012. Available at: http://extwprlegs1.fao.org/docs/pdf/uzb174929.pdf (in Russian).
3. On Measures to Encourage the Construction of Biogas Plants in Livestock and Poultry Farms of the Republic: Resolution of the Cabinet of Ministers of the Republic of Uzbekistan, November 25, 2015, No 343. Available at: https://lex.uz/docs/2823206 (in Russian).
4. Avezov R. R., Voxidov A. U., Kuralov M. A. (2018) Principles of Development of Solar Energy in the Republic of Uzbekistan. Sovremennye Problemy Vozobnovlyaemoi Energetiki: Sb. Materialov Resp. Nauch.-Prakt. Konf. [Modern Problems of Renewable Energy: Collection of Materials of the Republican Scientific-Practical Conference, March 18, 2018]. Karshi. 11–13 (in Russian).
5. Uzakov G. N. (2010) Efficiency of Joint Operation of Greenhouses and Solar Greenhouses. Applied Solar Energy, 46 (4), 319–320. https://doi.org/10.3103/S0003701X10040195.
6. Uzakov G. N. (2011) Calculation of the Heat Engineering Characteristics of a Combined System of a Vegetable Storage Facility and Solar Greenhouse. Applied Solar Energy, 47 (3), 248–251. https://doi.org/10.3103/S0003701X11030200.
7. Uzakov G. N. (2012) Technical and Economic Calculation of Combined Heating and Cooling Systems Vegetable Store-Solar Greenhouse. Applied Solar Energy, 48 (1), 60–61. https://doi.org/10.3103/S0003701X1201015X.
8. Uzakov G. N., Shomuratova S. M., Toshmamatov B. M. (2021) Study of a Solar Air Heater with a Heat Exchanger – Accumulator. IOP Conference Series: Earth and Environmental Science, 723, paper 052013. https://doi.org/10.1088/1755-1315/723/5/052013.
9. Morales S., Miranda R., Bustos D., Cazares T., Tran H. (2014) Solar Biomass Pyrolysisfor the Production of Bio-Fuels and Chemical Commodities. Journal of Analytical and Applied Pyrolysis, 109, 65–78. https://doi.org/10.1016/j.jaap.2014.07.012
10. Joardder M. U., Halder P., Rahim A., Paul N. (2014). Solar Assisted Fast Pyrolysis: A Novel Approach of Renewable Energy Production. Journal of Engineering, 2014, Article ID 252848, 1–9. https://doi.org/10.1155/2014/252848.
11. Zeng K., Minh D. P., Gauthier D., Weiss-Hortala E., Nzihou A., Flamant G. (2015) The Effect of Temperature and Heating Rate on Char Properties Obtained from Solar Pyrolysis of Beech Wood. Bioresource Technology, 182, 114–119. https://doi.org/10.1016/j.biortech.2015.01.112.
12. Zeaiter J., Ahmad M. N., Rooney D., Samneh B., Shammas E. (2015) Design of Automated Solar Concentrator for the Pyrolysis of Scrap Rubber. Energy Conversion and Management, 101, 118–125. http://doi.org/10.1016/j.enconman.2015.05.019.
13. Palchenok G. I., Khutskaya N. G. (2014) Energy-Saving Technologies for Thermochemical Conversion of Biomass and Lignocarbonate Wastes. Minsk, BNTU. 53 (in Russian).
14. Uzakov G. N., Davlonov X. A. (2021) Energy Saving Heating Systems of Solar Greenhouses. Tashkent, Voris Publ. 143 (in Russian).
15. Uzakov G. N., Davlonov X. A., Holikov K. N. (2018) Study of the Influence of the Source Biomass Moisture Content on Pyrolysis Parameters. Applied Solar Energy, 54 (6), 481–484. http://doi.org/10.3103/S0003701X18060178.
16. Uzakov G. N., Rabbimov R. T., Davlonov X. A., Uzakova Yu. G. (2015) Application of Pyrolysis Biomass Technologies for the Production of Alternative Fuels. Tashkent, Fan Publ. 120 (in Russian).
17. Almardanov X. A., Khatamov I. A., Turaev Z. B., Eshonkulov M., Jovliev S., Yusupov R. E. (2021) Application of Solar Concentrators to Obtain Alternative Fuel Through a Heliopyrolysis Device. Universum: Technical Sciences, (3), 8–12 (in Russian).
18. Vasilevich S. V., Malko M. V., Degterov D. V., Asadchyi A. N. (2020) Computational Study of the Yield of Solid Wood Pyrolysis Products under High Pressure. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (3), 253–263. https://doi.org/10.21122/1029-7448-2020-63-3-253-263 (in Russian).
19. Mitrofanov A. V., Mizonov V. E., Vasilevich S. V., Malko M. V. (2021) Experiments and Computational Research of Biomass Pyrolysis in a Cylindrical Reactor. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 64 (1), 51–64. https://doi.org/10.21122/1029-7448-2021-64-1-51-64 (in Russian).
20. Davlonov X. A., Almardanov X. A., Khatamov I. A. (2021) A Program for Modeling and Calculating the Exergic Balance of a Heliopyrolysis Device to Obtain Alternative Fuels from Biomass. No DGU 10337, Tashkent 03.03.2021 (in Russian).
21. Kirillin V. A., Sychev V. V., Sheyndlin A. E. (2008) Engineering Thermodynamics. Moscow, MPEI Publ. 416 (in Russian).
22. Duffy J., Beskman U. (2013) Fundamentals of Solar Thermal Power Engineering. Wiley. 910.
23. Avezov R. R., Orlov A. Yu. (1988) Solar Heating and Hot Water Systems. Tashkent, Fan Publ. 288 (in Russian).
24. Popov G. P. (1969) Concentric Optical Systems and Their Application in Optical Instrumentation. Moscow, Nauka Publ. 135 (in Russian).
25. Mukhiddinov M. M., Ergashev S. F. (1995) Solar Parabolic Cylindrical Installations. Tashkent, Fan Publ. 208 (in Russian).
26. Bessonov L. A. (1973) Theoretical Foundations of Electrical Engineering. Vol. 1–3. Moscow, Vysshaya Shkola Publ. (in Russian).
27. Demirchyan K. S., Neiman P. R., Korovkin N. V., Chechurin V. L. (2006) Theoretical Foundations of Electrical Engineering. Vol. 1–3. St. Petersburg, Peter Publ. (in Russian).
28. Zeveke G. V., Ionkin P. A., Netushil A. V., Strakhov S. V. (1989) Fundamentals of the Theory of Circuits. Moscow, Energoatomizdat Publ. 527 (in Russian).
Рецензия
Для цитирования:
Узаков Г.Н., Новик А.В., Давлонов Х.А., Алмарданов Х.А., Чулиев С.Э. Тепловой и материальный баланс гелиопиролизного устройства. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2023;66(1):57-65. https://doi.org/10.21122/1029-7448-2023-66-1-57-65
For citation:
Uzakov G.N., Novik A.V., Davlonov X.A., Almardanov X.A., Chuliev S.E. Heat and Material Balance of Heliopyrolysis Device. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2023;66(1):57-65. https://doi.org/10.21122/1029-7448-2023-66-1-57-65