Integrating a High Temperature Fuel Cell with СО2 Capture System into Thermal Power Plant Energy Cycle
https://doi.org/10.21122/1029-7448-2022-65-6-562-571
Abstract
The molten carbonate fuel cell allows for capturing, separating and concentrating CO2 as it passes through the carbonate melt from the cathode side to the anode side, while simultaneously generating electricity and heat. The article presents the technology and flow diagram of a system for capturing CO2 from flue gases of a thermal power plant in a high-temperature fuel cell on molten carbonates with subsequent conversion and utilization of gaseous combustible products in the energy cycle of a thermal power plant. The fuel cell runs on natural gas with internal reforming. After the fuel cell, the gas leaving the anode is sent to the conversion unit where, in reaction with carbon at high temperatures, combustible gases are formed that are suitable for re-combustion in the turbine. For power plants and a system for capturing and converting carbon dioxide, thermodynamic, technical and economic calculations were carried out. The efficiency of a high-temperature fuel cell is 42 %. In the baseline scenario, the net energy efficiency of the plant is 61 % while a CO2 capture ration is 80–85 %. The return of fuel gases after the conversion of carbon dioxide, taking into account their calorific value, makes it possible to additionally increase the electric power of the thermal power plant up to 20 %. With a unit cost of a fuel cell of 1300 EUR/kW and a price of natural gas of 0.04 EUR/kW, the total electricity cost of the plant is 0.074 EUR/kW. The results show that the proposed system is attractive for natural gas power generation with CO2 capture.
About the Authors
A. A. FilimonovaRussian Federation
Address for correspondence:
Filimonova Antonina A. –
Kazan State Power Engineering University,
51, Krasnoselskaya str., 420066, Kazan, Russian Federation
Tel.: +7 843 519-42-20
aachichirova@mail.ru
A. A. Chichirov
Russian Federation
Kazan
N. D. Chichirova
Russian Federation
Kazan
R. F. Kamalieva
Russian Federation
Kazan
References
1. García-Freites S., Gough C., Röder M. (2021) The Greenhouse Gas Removal Potential of Bioenergy with Carbon Capture and Storage (BECCS) to Support the UK's Net-Zero Emission Target. Biomass Bioenergy, 151, 10664. https://doi.org/10.1016/j.biombioe.2021.106164.
2. Vasudevan S., Farooq S., Karimi A. I., Saeys M., Quah M. C. G., Agrawal R. (2016) Energy Penalty Estimates for CO2 Capture: Comparison between Fuel Types and Capture-Combustion Modes. Energy, 103, 709–714. https://doi.org/10.1016/j.energy.2016.02.154.
3. Halliday C., Hatton T. A. (2020) The Potential of Molten Metal Oxide Sorbents for Carbon Capture at High Temperature: Conceptual Design. Applied Energy, 280, 116016. https://doi.org/10.1016/j.apenergy.2020.116016.
4. Yarmolchick Yu. Р., Schröger R., Haberfelner H., Pichler M., Kostić D., Moroz G. V. (2020) Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces. Part 1. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (3), 236–252. https://doi.org10.21122/1029-7448-2020-63-3-236-252 (in Russian).
5. Yarmolchick Yu. P., Schröger R., Haberfelner H., Pichler M., Kostić D., Moroz G. V. (2020) Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces. Part 2. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (6), 526–540. https://doi.org/10.21122/1029-7448-2020-63-6-526-540 (in Russian).
6. Wejrzanowski T., Cwieka K., Skibinski J., Lysik A., Ibrahim S. H., Milewski J., Xing W., Leed C.-G. (2020) Microstructure Driven Design of Porous Electrodes for Molten Carbonate Fuel Cell Application: Recent Progress. International Journal of Hydrogen Energy, 45 (47), 25719–25732. https://doi.org/10.1016/j.ijhydene.2019.12.038.
7. Duan L., Yue L., Feng T., Lu H., Bian J. (2016) Study on a Novel Pressurized MCFC Hybrid System with CO2 Capture. Energy, 196, 737–750. https://doi.org/10.1016/j.energy.2016.05.074.
8. Filimonova A. A., Chichirov A. A., Chichirova N. D., Filimonov A. G., Pechenkin A. V. (2020) Prospects for the Development of Hydrogen Power Engineering in Tatarstan. Power Engineering: Research, Equipment, Technology, 22 (6), 79–91. https://doi.org/10.30724/1998-9903-2020-22-6-79-91 (in Russian).
9. Rosen J., Geary T., Hilmi A., Blanco-Gutierrez R., Yuh C.-Y., Pereira C. S., Han L., Johnson R. A., Willman C. A., Ghezel-Ayagh H. (2020) Molten Carbonate Fuel Cell Performance for CO2 Capture from Natural Gas Combined Cycle Flue Gas. Journal of the Electrochemical Society, 167 (6), 064505. https://doi.org/10.1149/1945-7111/ab7a9f.
10. Campanari S., Chiesa P., Manzolini G., Bedogni S. (2014) Economic Analysis of CO2 Capture from Natural Gas Combined Cycles Using Molten Carbonate Fuel Cells. Applied Energy, 130, 562–573. https://doi.org/10.1016/j.apenergy.2014.04.011.
11. Spinelli M., Bona D. D., Gatti M., Martelli E., Vigan F., Consonni S. (2020) Assessing the Potential of Molten Carbonate Fuel Cell-Based Schemes for Carbon Capture in Natural Gas-Fired Combined Cycle Power Plants. Journal of Power Sources, 448, 227223. https://doi.org/10.1016/j.jpowsour.2019.227223.
12. Jolly S., Ghezel-Ayagh H., Willman C., Patel D., DiNitto M., Marina O. A., Pederson L., Steen W. (2015) Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams. ECS Transactions, 65 (1), 115–127. https://doi.org/10.1149/065 01.0115ecs.
13. Gatti M., Martelli E., Di Bona D., Gabba M., Scaccabarozzi R., Spinelli M., Viganò F., Consonni S. (2020) Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO2 Capture in Natural Gas-Fired Power Plants. Energies, 13 (3), 543. https://doi.org/10.3390/en13030543.
14. Trukhina O. S., Sintsov I. A. (2016) Experience of Carbone Dioxide Usage for Enhanced Oil Recoverу. Uspekhi Sovremennogo Estestvoznaniya = Advances in Current Natural Sciences, (3), 205–209 (in Russian).
15. Chen S., Zhou N., Wu M., Chen S., Xiang W. (2022) Integration of Molten Carbonate Fuel Cell and Chemical Looping Air Separation for High-Efficient Power Generation and CO2 Capture. Energy, 254 (Part A), 124184. https://doi.org/10.1016/j.energy.2022.124184.
Review
For citations:
Filimonova A.A., Chichirov A.A., Chichirova N.D., Kamalieva R.F. Integrating a High Temperature Fuel Cell with СО2 Capture System into Thermal Power Plant Energy Cycle. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2022;65(6):562-571. (In Russ.) https://doi.org/10.21122/1029-7448-2022-65-6-562-571