Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск

Оценка эффективности сооружения ветроэнергетических установок на нужды теплоснабжения

https://doi.org/10.21122/1029-7448-2022-65-4-366-380

Аннотация

В России, как и во всем мире, имеются районы, испытывающие различные проблемы с теплоснабжением, главным образом обусловленные высокой стоимостью органического топлива, ростом тарифов и загрязнением окружающей среды. В связи с этим поиск путей, способствующих энергосбережению и повышению энергетической, экономической и экологической эффективности работы современных систем теплоснабжения, становится жизненно важным. Один из них заключается в освоении и вовлечении в топливно-энергетический баланс особых видов энергии, к числу которых относятся возобновляемые источники энергии, в частности энергия ветра. В статье рассмотрен способ решения проблемы теплоснабжения, направленный на удовлетворение потребности в тепловой энергии целого поселка, путем использования ветроэнергетических установок совместно с котельной, работающей на мазуте. Выполнена оценка эффективности сооружения ветроэнергетических установок общей мощностью 1,7 МВт на нужды теплоснабжения поселка Териберка, расположенного на побережье Баренцева моря в России. Выбранный район характеризуется среднегодовой скоростью ветра 7,0 м/с и длительным отопительным периодом (9–10 месяцев в году). Как показали исследования, с финансовой точки зрения сооружение ветроэнергетических установок является оправданным: к завершению их планового срока службы может быть сформирована дополнительная прибыль, достигающая половины суммы первоначальных инвестиций. Ожидается, что полученные результаты восполнят недостаток информации о целесообразности сооружения ветроэнергетических установок на нужды теплоснабжения, что весьма полезно для других стран, в которых имеются похожие районы, испытывающие различные проблемы с теплоснабжением.

Об авторе

А. В. Бежан
Центр физико-технических проблем энергетики Севера Федерального исследовательского центра «Кольский научный центр Российской академии наук»
Россия

Адрес для переписки: 
Бежан Алексей Владимирович

Центр физико-технических проблем энергетики Севера Федерального исследовательского центра «Кольский научный центр Российской академии наук»,
ул. Ферсмана, 14,
184209, г. Апатиты, Российская Федерация.
Тел.: +7 81555 793-69
a.bezhan@ksc.ru



Список литературы

1. Zheng J., Zhou Zh., Zhao J., Wang J. (2018) Integrated Heat and Power Dispatch Truly Utilizing Thermal Inertia of District Heating Network for Wind Power Integration. Applied Energy, 211, 865–874. https://doi.org/10.1016/j.apenergy.2017.11.080.

2. Gu W., Wang J., Lu S., Luo Z., Wu C. (2017) Optimal Operation for Integrated Energy System Considering Thermal Inertia of District Heating Network and Buildings. Applied Energy, 199, 234–246. https://doi.org/10.1016/j.apenergy.2017.05.004.

3. Dorotić H., Ban M., Pukšec T., Duić N. (2020) Impact of Wind Penetration in Electricity Markets on Optimal Power-to-Heat Capacities in a Local District Heating System. Renewable and Sustainable Energy Reviews, 132, 110095. https://doi.org/10.1016/j.rser.2020.110095.

4. Li G., Zhang R., Jiang T., Chen H., Bai L., Cui H., Li X. (2017) Optimal Dispatch Strategy for Integrated Energy Systems with CCHP and Wind Power. Applied Energy, 192, 408–419. https://doi.org/10.1016/j.apenergy.2016.08.139.

5. Bezhan A. V., Minin V. A. (2017) Estimation of Efficiency of the Heat Supply System Based on a Boiler House and a Wind Turbine in the Northern Environment. Thermal Engineering, 64 (3), 201–208. https://doi.org/10.1134/S0040601516100013.

6. Minin V. A., Furtaev A. I. (2019) Wind Potency in the Western Sector of the Russian Arctic and its Possible Uses. IOP Conference Series: Earth and Environmental Science. 4th International Scientific Conference Arctic: History and Modernity, 302, 012067. https://doi.org/10.1088/1755-1315/302/1/012067.

7. Bezhan A. V. (2020) Performance Improvement of Heat Supply Systems through the Implementation of Wind Power Plants. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (3), 285–296. https://doi.org/10.21122/1029-7448-2020-63-3-285-296 (in Russian).

8. Kotel’nikov A. V., Shevlyugin M. V., Zhumatova A. A. (2017) Distributed Generation of Electric Energy in Traction Power-Supply Systems of Railways Based on Wind-Power Plants. Russian Electrical Engineering, 88 (9), 586–591. https://doi.org/10.3103/s1068371217090085.

9. Makarov Yu. V., Loutan C., Ma Ji., Mello Ph. (2009) Operational Impacts of Wind Generation on California Power Systems. IEEE Transactions on Power Systems, 24 (2), 1039–1050. https://doi.org/10.1109/tpwrs.2009.2016364.

10. Sen R., Bhattacharyya S. C. (2014) Off-Grid Electricity Generation with Renewable Energy Technologies in India: An Application of HOMER. Renewable Energy, 62, 388–398. https://doi.org/10.1016/j.renene.2013.07.028.

11. Strbac G., Shakoor A., Black M., Pudjianto D., Bopp T. (2007) Impact of Wind Generation on the Operation and Development of the UK Electricity Systems. Electrical Power Systems Research, 77 (9), 1214–1227. https://doi.org/10.1016/j.epsr.2006.08.014.

12. Petrusha U. S., Papkova N. A. (2019) The Prospects for Wind Energy Development in the Republic of Belarus. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations,, 62 (2), 124–134. https://doi.org/10.21122/1029-7448-2019-62-2-124-134 (in Russian).

13. De Alegría I., Andreu J., Martín J., Ibañez P., Villate J., Camblong H. (2007) Connection Requirements for Wind Farms: A Survey on Technical Requierements and Regulation. Renewable and Sustainable Energy Reviews, 11 (8), 1858–1872. https://doi.org/10.1016/j.rser.2006.01.008.

14. Ibrahima H., Ghandourb M., Dimitrovaa M., Ilincac A., Perrond J. (2011) Integration of Wind Energy into Electricity Systems: Technical Challenges and Actual Solutions. Energy Procedia, 6, 815–824. https://doi.org/10.1016/j.egypro.2011.05.092.

15. Roy R.-B., Rokonuzzaman Md. (2014) STATCOM Model for Integration of Wind Turbine to Grid. TELKOMNIKA. Indonesian Journal of Electrical Engineering, 12 (9), 6519–6525. https://doi.org/10.11591/telkomnika.v12i9.6155.

16. Celik A. (2002) Optimisation and Techno-Economic Analysis of Autonomous Photovoltaic – Wind Hybrid Energy Systems in Comparison to Single Photovoltaic and Wind Systems. Energy Conversion and Management, 43 (18), 2453–2468. https://doi.org/10.1016/s0196-8904(01)00198-4.

17. Vendoti S., Muralidhar M., Kiranmayi R. (2021) Techno-Economic Analysis of Off-Grid Solar/Wind/Biogas/Biomass/ Fuel Cell/Battery System for Electrification in a Cluster of Villages by HOMER Software. Environment Development and Sustainability, 23 (1), 351–372. https://doi.org/10.1007/s10668-019-00583-2.

18. Haghighat Mamaghani A., Avella Escandon S. A., Najafi B., Shirazi A., Rinaldi F. (2016) Techno-Economic Feasibility of Photovoltaic, Wind, Diesel and Hybrid Electrification Systems for off-Grid Rural Electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.08.

19. Sagani A., Vrettakos G., Dedoussis V. (2017) Viability Assessment of a Combined Hybrid Electricity and Heat System for Remote Household Applications. Solar Energy, 151, 33–47. https://doi.org/10.1016/j.solener.2017.05.011.

20. Miao C., Teng K., Wang Y., Jiang L. (2020) Technoeconomic Analysis on a Hybrid Power System for the UK Household Using Renewable Energy: A Case Study. Energies, 13 (12), 3231. https://doi.org/10.3390/en13123231.

21. Figaj R., Zoladek M., Goryl W. (2020) Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software. Energies, 13 (14), 3523. https://doi.org/10.3390/en13143523.

22. Ozgener O. (2010) Use of Solar Assisted Geothermal Heat Pump and Small Wind Turbine Systems for Heating Agricultural and Residential Buildings. Energy, 35 (1), 262–268. https://doi.org/10.1016/j.energy.2009.09.018.

23. Evseev E., Kisel T. (2018) Management in the Heat-Supplying Organizations on the Basis of Balance Models. MATEC Web of Conferences, 170, 01112. https://doi.org/10.1051/matecconf/201817001112.

24. Möller B., Wiechers E., Persson U., Grundahl L., Lund R. S., Mathiesen B. V. (2019) Heat Roadmap Europe: Towards EU-Wide, Local Heat Supply Strategies. Energy, 177, 554–564. https://doi.org/10.1016/j.energy.2019.04.098.

25. Mednikova (Iakimetc) E. E., Stennikov V. A., Postnikov I. V. (2017) Heat Supply Systems Development: The Influence of External Factors and Reliability. Energy Procedia, 105, 3152–3157. https://doi.org/10.1016/j.egypro.2017.03.683.

26. Giordano N., Raymond J. (2019) Alternative and Sustainable Heat Production for Drinking Water Needs in a Subarctic Climate (Nunavik, Canada): Borehole Thermal Energy Storage to Reduce Fossil Fuel Dependency in Off-Grid Communities. Applied Energy, 252, 113463. https://doi.org/10.1016/j.apenergy.2019.113463.

27. Zore Z., Čuček L., Širovnik D., Novak Pintarič Z., Kravanja Z. (2018) Maximizing the Sustainability Net Present Value of Renewable Energy Supply Networks. Chemical Engineering Research and Design, 131, 245–265. https://doi.org/10.1016/j.cherd.2018.01.035.

28. Žižlavský O. (2014) Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia – Social and Behavioral Sciences, 156, 506–512. https://doi.org/10.1016/j.sbspro.2014.11.230.

29. Fedorova E. A., Musienko S. O., Afanas’ev D. O. (2020) Impact of the Russian Stock Market on Economic Growth. Finance: Theory and Practice, 24 (3), 161–173. https://doi.org/10.26794/2587-5671-2020-24-3-161-173.

30. Ramli M. A. M., Hiendro A., Al-Turki Y. A. (2016) Techno-Economic Energy Analysis of Wind/Solar Hybrid System: Case Study for Western Coastal Area of Saudi Arabia. Renewable Energy, 91, 374–385. https://doi.org/10.1016/j.renene.2016.01.071.

31. Di Piazza A., Di Piazza M. C., Ragusa A., Vitale G. (2010) Statistical Processing of Wind Speed Data for Energy Forecast and Planning. Renewable Energy and Power Quality Journal, 1 (08), 1417–1422. https://doi.org/10.24084/repqj08.680.

32. Moemken J., Reyers M., Feldmann H., Pinto J. G. (2018) Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123 (12), 6373–6389. https://doi.org/10.1029/2018jd028473.

33. Nigim K. A., Parker P. (2007) Heuristic and Probabilistic Wind Power Availability Estimation Procedures: Improved Tools for Technology and Site Selection. Renewable Energy, 32 (4), 638–648. https://doi.org/10.1016/j.renene.2006.03.001.

34. Ayodele T. R., Jimoh A. A., Munda J. L., Agee J. T. (2013) A Statistical Analysis of Wind Distribution and Wind Power Potential in the Coastal Region of South Africa. International Journal of Green Energy, 10 (8), 814–834. https://doi.org/10.1080/15435075.2012.727112.

35. Bezhan A. V. (2020) Evaluation of Expediency of Using Wind Energy for Heat Supply on the Barents Sea Coast of Russia. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, 1–4. https://doi.org/10.1109/FarEastCon50210.2020.9271641.

36. Martín H., Coronas S., Alonso A., De la Hoz J., Matas J. (2020) Renewable Energy Auction Prices: Near Subsidy-Free. Energies, 13 (13), 3383. https://doi.org/10.3390/en13133383.

37. Cardoso J., Silva V., Eusébio D. (2019) Techno-Economic Analysis of a Biomass Gasification Power Plant Dealing with Forestry Residues Blends for Electricity Production in Portugal. Journal of Cleaner Production, 212, 741–753. https://doi.org/10.1016/j.jclepro.2018.12.054

38. Duc Luong N. (2015) A Critical Review on Potential and Current Status of Wind Energy in Vietnam. Renewable and Sustainable Energy Reviews, 43, 440–448. https://doi.org/10.1016/j.rser.2014.11.060.

39. Simsek Y., Mata-Torres C., Guzmán A. M., Cardemil J. M., Escobar R. (2018) Sensitivity and Effectiveness Analysis of Incentives for Concentrated Solar Power Projects in Chile. Renewable Energy, 129, Part A, 214–224. https://doi.org/10.1016/j.renene.2018.06.012.


Рецензия

Для цитирования:


Бежан А.В. Оценка эффективности сооружения ветроэнергетических установок на нужды теплоснабжения. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2022;65(4):366-380. https://doi.org/10.21122/1029-7448-2022-65-4-366-380

For citation:


Bezhan A.V. Efficiency Estimation of Constructing of Wind Power Plant for the Heat Supply Needs. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2022;65(4):366-380. https://doi.org/10.21122/1029-7448-2022-65-4-366-380

Просмотров: 479


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)