Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск

Сравнительный анализ мероприятий и технических средств для подавления апериодической составляющей в токе линейного выключателя

https://doi.org/10.21122/1029-7448-2021-64-4-314-327

Полный текст:

Аннотация

В статье рассматриваются электромагнитные переходные процессы при реализации трехфазного автоматического повторного включения на линии электропередачи сверхвысокого напряжения 750 кВ. Анализируются предвключенные активные сопротивления, управляемые шунтирующие реакторы, неполнофазные режимы работы шунтирующих реакторов, автоматические шунтирования фазы с учетом изменения степени компенсации зарядной мощности и углов включения элегазовых выключателей. Разработаны схемы замещения отключенных неповрежденных фаз линии сверхвысокого напряжения для исследования апериодической составляющей тока. Оценены значения активных предвключенных сопротивлений и автоматического шунтирования фаз на снижение характеристик апериодической составляющей тока. Разработана имитационная модель и смоделированы переходные процессы на линии электропередачи 750 кВ. Выполнены серии моделирований электромагнитных переходных процессов на реальных линиях электропередачи сверхвысокого напряжения. Проанализированы причины аварий линейных элегазовых выключателей при коммутации компенсированных воздушных линий 750 кВ. Изучены электромагнитные процессы в компенсированных линиях электропередачи в зависимости от начальных условий в момент коммутации. Выявлены моменты резкого изменения параметров переходных процессов при коммутации в линиях сверхвысокого напряжения. Оценено влияние суммарных индуктивностей и активных сопротивлений на характеристики апериодической составляющей. Выведены аналитические зависимости постоянной времени апериодической компоненты от момента коммутации и значений суммарного активного сопротивления и индуктивности. Рассмотрены мероприятия для ограничения продолжительности сущест-вования апериодической составляющей тока. Указано, что избежать аварийного режима работы можно соответствующей настройкой устройства контроля коммутации элегазовых выключателей. Даны рекомендации по предупреждению возникновения и развития аварийного режима на подстанциях с элегазовыми выключателями.  

Об авторе

В. B. Кучанский
Институт электродинамики Национальной академии наук Украины
Украина

Адрес для переписки: Кучанский Владислав Владимирович – Институт электродинамики Национальной академии наук Украины, просп. Победы, 56, 03057, г. Киев, Украина.  Тел.: +38 050 387-89-42
kuchanskiyvladislav@gmail.com



Список литературы

1. Kuznetsov V. G., Tugai Yu. I., Shpolyansky O. G. (2017) Analysis of the Preconditions of SF6 Circuit Breakers Damage in 750 kV Electric Networks. Praci Institutu Elektrodinamiki Natsional’noi Akademii Nauk Ukraini [Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine], (47), 5–9. https://doi.org/10.15407/publishing2017.47.016 (in Ukrainian).

2. Naumkin I. E. (2012) Emergency Failures of SF6 Circuit Breakers when Switching Compensated 500–1150 kV Overhead Power Lines. Elektrichestvo, (10), 22–32 (in Russian).

3. Blumschein J., Yelgin Y., Ludwig A. (2017) Adaptive Autoreclosure to Increase System Stability and Reduce Stress to Circuit Breakers. 70th Annual Conference for Protective Relay Engineers (CPRE), 1–8. https://doi.org/10.1109/cpre.2017.8090004.

4. Silva F. F., Bak C. L., Gudmundsdottir U. S., Wiechowski W., Knardrupgard M. R. (2010) Methods to Minimize Zero-Missing Phenomenon. IEEE Trans. on Power Del., 25 (4), 2923–2930. https://doi.org/10.1109/tpwrd.2010.2045010.

5. Ji L., Booth C., Dyśko A., Kawano F., Beaumont P. (2014) Improved Fault Location Through Analysis of System Parameters During Autoreclose Operations on Transmission Lines. IEEE Transactions on Power Delivery, 29 (6), 2430–2438. https://doi.org/10.1109/TPWRD.2014.2307051.

6. Li G., Yao S., Wang P., Yan D., Gao X., Yao Y. (2017) Discussion on the Problem About Capacitive Current Switching of EHV and UHV AC Circuit Breaker. 4th International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST), Oct. 22–25, 2017. https://doi.org/10.13296/j.1001-1609.hva.2018.03.034.

7. Kachesov V. E., Kachesov D. V. (2011) Requirements for Switching Algorithms of EHV Shunt Compensated OHL by SF6 Circuit Breakers. Proceedings of International Conference on Power Systems Transients (IPST 2011), June 14–17, 2011, Delft, 15–18.

8. Naumkin I., Balabin M., Lavrushenko N., Naumkin R. (2011) Simulation of the 500 kV SF6 Circuit Breaker Cutoff Process during the Unsuccessful Three-Phase Autoreclosing. Proceedings of International Conference on Power Systems Transients (IPST 2011), June 14–17, 2011, Delft. Available at: https://www.ipstconf.org/papers/Proc_IPST2011/11IPST025.pdf

9. Jian H., Xiaofeng J., Xiaoguang H. (2010) Automated Monitoring and Analysis for High Voltage Circuit Breaker. 5th IEEE Conference on Industrial Electronics and Applications. Taichung, 560–564. https://doi.org/10.1109/iciea.2010.5517076.

10. Gong R., Wang S., Luo X. (2012) Analysis and Design in Extra High Voltage Circuit Breakers Employing Shunted Capacitors. 6th International Conference on Electromagnetic Field Problems and Applications. Dalian, Liaoning, 1–4. https://doi.org/10.1109/icef.2012.6310424.

11. Lazimov T., Saafan E. A., Babayeva N. (2015) Transitional Processes at Switching-Off Capacitor Banks by Circuit-Breakers with Pre-Insertion Resistors. Modern Electric Power Systems (MEPS). Wroclaw, 1–4. https://doi.org/10.1109/meps.2015.7477204.

12. Lazimov T., Imanov S., Saafan E. A. (2010) Transitional Recovery Voltages at Capacitive Currents Switching-Offs by Vacuum and SF6 Circuit-Breakers. Modern Electric Power Systems. Wroclaw, 1–5. https://doi.org/10.13140/RG.2.1.2156.9446.

13. Kuchanskyy V. (2019) Application of Controlled Shunt Reactors for Suppression Abnormal Resonance Overvoltages in Assymetric Modes. IEEE 6th International Conference on Energy Smart Systems (ESS). Kyiv, 122–125. https://doi.org/10.1109/ess.2019.8764196.

14. Kuchanskyy V. (2017) The Prevention Measure of Resonance Overvoltges in Extra High Voltage Transmission Lines. IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Kiev, 436–441. https://doi.org/10.1109/ukrcon.2017.8100529.

15. Tugay Y. (2009) The Resonance Overvoltages in EHV Network. Proceedings of IEEE Sponsored Conference EPQU’09 – International Conference on Electrical Power Quality and Utilisation. Sept. 15–17, 2009, Lodz, 14–18. https://doi.org/10.1109/epqu.2009.5318812.

16. Kuchanskyy V. (2017) The Application of Controlled Switching Device for Prevention Resonance Overvoltages in Nonsinusoidal Modes. IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). Kiev, 394–399. https://doi.org/10.1109/elnano.2017.7939785.

17. Live Tank Circuit Breakers. Buyer’s Guide. ABB AB. 2014. 152.

18. Chun-Lien Su, Po-Han Wang, Chi-Hsiang Liao, Min-Hung Chou (2016) Analysis of Harmonic Overvoltages During Transformer Energization for Mass Rapid Transit Systems. 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). https://doi.org/10.1109/CPE.2016.7544154.

19. Abdulsalam S. G., Xu W. (2007) A Sequential Phase Energization Method for Transformer Inrush Current Reduction-Transient Performance and Practical Consideration. IEEE Transactions on Power Delivery, 22 (1), 208–216. https://doi.org/10.1109/tpwrd.2006.881450.

20. Brunke J. H., Fröhlich K. J. (2001) Elimination of Transformer Inrush Currents by Controlled Switching. Part II: Application and Performance Considerations. IEEE Transactions on Power Delivery, 16 (2), 281–285. https://doi.org/10.1109/61.915496.

21. Cho C., Lee J., Min B. (2017) Application of Controlled Switching Device for High Voltage Circuit Breaker in KEPCO Real Power System. 4th International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST). Xi’an, 492–495. https://doi.org/10.1109/ icepe-st.2017.8188892.

22. Hasibar R. M., Legate A. C., Brunke J., Peterson W. G. (1981) The Application of Highspeed Grounding Circuit Breakers for Single-Pole Reclosing on 500 kV Power Systems. IEEE Transactions on Power Apparatus and Systems, PAS-100 (4), 1512–1515. https://doi.org/10.1109/tpas.1981.316499.

23. Baina H., Xin L., Jianyuan X. (2008) The Analysis of Secondary Arc Extinction Characteristics on UHV Transmission Lines. International Conference on High Voltage Engineering and Application. Chongqing, 516–519. https://doi.org/10.1109/ichve.2008.4773986.

24. Mizoguchi H., Hioki I., Yokota T., Yamagata Y., Tanaka K. (1998) Development of an Interrupting Chamber for 1000 kV Highspeed Grounding Circuit Breakers. IEEE Transactions on Power Delivery, 13 (2), 495–502. https://doi.org/10.1109/61.660920.

25. Chi T., Xin L., Jianyuan X., Zhen-xin G. (2008) Comparison and Analysis on Very Fast Transient Overvoltage Based on 550 kV GIS and 800 kV GIS. International Conference on High Voltage Engineering and Application. Chongqing, 288–291. https://doi.org/10.1109/ichve. 2008.4773930.

26. Zhezhelenko I. V. (2018) The Main Directions of Improving the Efficiency of Production, Transmission and Distribution of Electrical Energy. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 61 (1), 28–35. https://doi.org/10.21122/1029-7448-2018-61-1-28-35 (in Russian).

27. Lasy P. G., Meleshko I. N. (2019) Application of Polylogarithms to the Approximate Solution of the Inhomogeneous Telegraph Equation for the Distortionless Line. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 62 (5), 413–421. https://doi.org/10.21122/1029-7448-2019-62-5-413-421 (in Russian).


Для цитирования:


Кучанский В.B. Сравнительный анализ мероприятий и технических средств для подавления апериодической составляющей в токе линейного выключателя. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2021;64(4):314-327. https://doi.org/10.21122/1029-7448-2021-64-4-314-327

For citation:


Kuchanskyi V.V. Comparative Analysis of Measures and Technical Means for Suppressing the Aperiodic Current Component in Circuit Breaker. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2021;64(4):314-327. https://doi.org/10.21122/1029-7448-2021-64-4-314-327

Просмотров: 29


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)