Preview

Simulation of Photovoltaic Thermoelectric Battery Characteristics

https://doi.org/10.21122/1029-7448-2021-64-3-250-258

Abstract

Solar radiation is an environmentally friendly and affordable energy source with high release of energy. The use of a photovoltaic thermoelectric battery makes it possible to increase the efficiency of converting solar and thermal radiation into electrical energy, both on serene and cloudy days. An original battery structure with photovoltaic and thermoelectric converters is proposed. The 3D model of the proposed photovoltaic thermoelectric battery was realized in the COMSOL Multiphysics software environment with the use of a heat transfer module. The simulation was performed for the geographical coordinates of Minsk and taking into account the diurnal and seasonal variations of both the ambient temperature and the power density of the concentrated AM1.5 solar spectrum, the maximum value of which being varied from 1 to 500 kW/m2. The dependences of the maximum temperature values of the photovoltaic thermoelectric battery and the thermoelectric converters as well as temperature gradient patterns in the thermoelectric converters have been calculated. The dependences of the maximum temperature gradient values inside the thermoelectric converters on the solar power density are obtained. The graphs of the temperature gradients inside the thermoelectric converters of the photovoltaic thermoelectric battery by concentrated solar radiation versus the time of day in the middle of July and January are provided. It is shown that the output voltage increases up to the maximum values of 635 and 780 mV, respectively, in January and in July were achieved due to the temperature stabilization of the back side of the external electrodes of the proposed device

About the Authors

A. K. Esman
Belarusian National Technical University
Belarus

Address for correspondence: Esman Alexander K. – Belarusian National Technical University, 65 Nezavisimosty Ave., 220013, Minsk, Republic of Belarus. Tel.: +375 17 331-00-50  ak_esman@bntu.by



G L. Zykov
Belarusian National Technical University
Belarus

Minsk



V. A. Potachits
Belarusian National Technical University
Belarus

Minsk



V. K. Kuleshov
Belarusian National Technical University
Belarus

Minsk



References

1. Licht A., Pfiester N., DeMeo D., Chivers J., Vandervelde Th. E. (2019) A Review of Advances in Thermophotovoltaics for Power Generation and Waste Heat Harvesting. MRS Advances, 4 (41–42), 2271–2282. https://doi.org/10.1557/adv.2019.342.

2. Angenendt G., Zurmühlen S., Rücker F., Axelsen H., Sauer D. U. (2019) Optimization and Operation of Integrated Homes with Photovoltaic Battery Energy Storage Systems and Power-to-Heat Coupling. Energy Conversion and Management: X, 1, 100054-1–100054-17. https://doi.org/10.1016/j.ecmx.2019.100005.

3. Omair Z., Scranton Gr., Pazos-Outon L. M., Xiao T. P., Steiner M. A., Ganapati V., Peterson P. F., Holzrichter J., Atwater H., Yablonovitch E. (2019) Ultraefficient Thermophotovoltaic Power Conversion by Band-Edge Spectral Filtering. Proceeding of the National Academy of Sciences of the United States of America, 116 (31), 15356–15361. https://doi.org/10.1073/ pnas.1903001116.

4. Vega-Garita V., Ramirez-Elizondo L., Bauer P. (2017) Physical Integration of a Photovoltaic-Battery System: a Thermal Analysis. Applied Energy, 208, 446–455. https://doi.org/10.1016/j.apenergy.2017.10.007.

5. Saxena P., Gorji N. E. (2019) COMSOL Simulation of Heat Distribution in Perovskite Solar Cells: Coupled Optical-Electrical-Thermal 3D Analysis. IEEE Journal of Photovoltaics, 9 (6), 1693–1698. https://doi.org/10.1109/jphotov.2019.2940886.

6. Mamadalieva L. (2020) New Design of the Selective Photothermogenerator with a Fixed Slit. Physics and Mathematics, 9, 1–7. https://www.ukrlogos.in.ua/10.11232-2663-4139.09.14.html (in Russian).

7. Cotfas P. A., Cotfas D. T. (2020) Comprehensive Review of Methods and Instruments for Photovoltaic-Thermoelectric Generator Hybrid System Characterization. Energies, 13 (22), 6045-1–6045-32. https://doi.org/10.3390/en13226045.

8. Esman A. K., Kuleshov V. K., Zykov G. L., Zalesski V. B. (2016) Photovoltaic Thermoelectric Battery: Patent No 19928 Republic of Belarus (in Russian).

9. Thermo-Photo-Voltaic Cell. COMSOL, Inc. USA. Available at: https://www.comsol.com/model/ thermo-photo-voltaic-cell-494 (Accessed 3 February 2021).

10. Analyze Thermal Effects with the Heat Transfer Module. COMSOL, Inc. USA. Available at: https://www.comsol.com/heat-transfer-module (Accessed 3 February 2021).

11. Esman A. K., Kuleshov V. K., Potachits V. A., Zykov G. L. (2018) Simulation of Tandem Thin-Film Solar Cell on the Basis of CuInSe2. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 61 (5), 385–395. https://doi.org/10.21122/1029-7448-2018-61-5-385-395.

12. Esman A. K., Zykov G. L., Potachits V. A., Kuleshov V. K. (2020) Simulation of Thin-Film Solar Cells with a CuInSe2 Chalcopyrite Structure. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 63 (1), 5–13. https://doi.org/10. 21122/1029-7448-2020-63-1-5-13.

13. Sathya P., Swarna Priya R. M. (2019) Numerical Modeling and Simulation of Thermophotovoltaic Cell using COMSOL. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). Vellore, 1–5. https://doi.org/10.1109/i-pact44901.2019.8960167.

14. Colangelo G., de Risi A., Laforgia D. (2003) New Approaches to the Design of the Combustion System for Thermophotovoltaic Applications. Semiconductor Science and Technology, 18 (5), S262–S269. https://doi.org/10.1088/0268-1242/18/5/318.

15. Mahamudul H., Rahman Md. M., Metselaar H. S. C., Mekhilef S., Shezan S. A., Sohel R., Karim S. B. A., Badiuzaman W. N. I. (2016) Temperature Regulation of Photovoltaic Module Using Phase Change Material: a Numerical Analysis and Experimental Investigation. International Journal of Photoenergy, 5917028-1–5917028-8. https://doi.org/10.1155/2016/5917028.


Review

For citations:


Esman A.K., Zykov G.L., Potachits V.A., Kuleshov V.K. Simulation of Photovoltaic Thermoelectric Battery Characteristics. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2021;64(3):250-258. https://doi.org/10.21122/1029-7448-2021-64-3-250-258

Views: 1734


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)