Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск

Формирование ортогональных составляющих входных токов в микропроцессорных защитах электроустановок

https://doi.org/10.21122/1029-7448-2021-64-3-191-201

Полный текст:

Аннотация

Используемые в микропроцессорных защитах электроустановок методы формирования ортогональных составляющих входных токов обеспечивают достоверное их выделение после изменения режима по истечении одного или нескольких периодов основной частоты. Это обусловлено инерционностью функциональных элементов, в частности цифровых частотных фильтров, а также насыщением стали магнитопроводов трансформаторов тока. Для повышения быстродействия выделения ортогональных составляющих входных токов предложено формировать их как эквивалентные по значениям косинусной и синусной составляющих, полученных с использованием цифровых фильтров Фурье, путем умножения на результирующий коэффициент. Разработанная методика определения указанного коэффициента обеспечивает компенсацию запаздывания, обусловленного инерционностью цифровых фильтров, а также насыщением стали магнитопроводов трансформаторов тока. Предложенный метод формирования ортогональных составляющих отличается высокой эффективностью в режимах сильного насыщения магнитопровода при сложном входном воздействии при наличии в нем апериодической составляющей с большой постоянной времени затухания. Оценка эффективности функционирования разработанного метода выполнялась с помощью комплексной цифровой модели, реализованной в среде динамического моделирования MatLab-Simulink. В результате исследований установлено, что при отсутствии насыщения магнитопровода трансформаторов тока, а также при незначительной и средней его степени разработанный метод формирования эквивалентных ортогональных составляющих входных токов обладает динамическими свойствами, близкими к характеристикам ранее предложенных. При сильном насыщении магнитопровода трансформаторов тока обеспечивается повышение быстродействия получения достоверных значений указанных составляющих в 1,5–2 раза.

Об авторах

Ф. А. Романюк
Белорусский национальный технический университет
Беларусь

Адрес для переписки: Романюк Федор Алексеевич - Белорусский национальный технический университет, просп. Независимости, 65/2, 220013, гМинскРеспублика БеларусьТел.: +375 17 331-00-51
faromanuk@bntu.by



Ю. В. Румянцев
Белорусский национальный технический университет
Беларусь

гМинск



В. Ю. Румянцев
Белорусский национальный технический университет
Беларусь

гМинск



И. В. Новаш
Белорусский национальный технический университет
Беларусь

гМинск



Список литературы

1. Шнеерсон, Э. М. Цифровая релейная защита / Э. М. Шнеерсон. М.: Энергоатомиздат, 2007. 549 с.

2. Реализация цифровых фильтров в микропроцессорных устройствах релейной защиты / Ю. В. Румянцев [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2016. Т. 59, № 5. С. 397–417. https://doi.org/10.21122/1029-7448-2016-59-5-397-417.

3. Cosse, R. E. CT Saturation Calculations: are they Applicable in the Modern World? Part I: The Question / R. E. Cosse, D. G. Dunn, R. M. Spiewak // IEEE Transactions on Industry Applications. 2005. Vol. 43, No 2. P. 444 –452. https://doi.org/10.1109/tia.2006.890023.

4. Benmouyal, G. The Impact of High Fault Current and CT Rating Limits on Overcurrent Protection / G. Benmouyal, S. E. Zocholl // Proceedings of the 29th Annual Western Protective Relay Conference, Spokane, WA. 2002.

5. Instantaneous Overcurrent Element for Heavily Saturated Current in a Power System: pat. US US6757146 B2 / G. Benmouyal, S. E. Zocholl, A. Guzman-Casillas. Publ. date 29.06.2004.

6. Методика повышения быстродействия измерительных органов микропроцессорных защит электроустановок / Ф. А. Романюк [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2019. Т. 62, № 5. С. 403–412. https://doi.org/10.21122/1029-7448-2019-62-5-403-412.

7. Совершенствование алгоритма формирования ортогональных составляющих входных величин в микропроцессорных защитах / Ф. А. Романюк [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2021. Т. 64, № 2. С. 95–108. https://doi.org/10.21122/1029-7448-2021-64-2-95-108.

8. Федосеев, А. М. Релейная защита электрических систем. Релейная защита сетей / А. М. Федосеев. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1992. 528 с.

9. Чернобровов, Н. В. Релейная защита энергетических систем / Н. В. Чернобровов, В. А. Семенов. М.: Энергоатомиздат, 1998. 800 с.

10. Формирование ортогональных составляющих входных сигналов в микропроцессорных защитах / Ф. А. Романюк [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2020. Т. 63, № 4. С. 328–339. https://doi.org/10.21122/1029-7448-2020-63-4-328-339.

11. SimPowerSystems. User’s Guide. Version 5 [Electronic resource]. The MathWorks, 2011. Mode of access: https://all-guidesbox.com/manual/545991/matlab-simpowersystems-5-operation-user-s-manual-403.html.

12. Черных, И. В. Моделирование электротехнических устройств в MatLab, SimPowerSystems и Simulink / И. В. Черных. М.: ДМК Пресс; СПб.: Питер, 2011. 288 с.

13. Дэбни, Дж. Б. Simulink 4. Секреты мастерства / Дж. Б. Дэбни, Т. Л. Харман; пер. с англ. М.: БИНОМ. Лаборатория знаний, 2003. 403 с.

14. Цифровой измерительный орган для функционирования в условиях глубокого насыщения трансформатора тока / Ю. В. Румянцев [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2018. Т. 61, № 6. С. 483–493. https://doi.org/10.21122/1029-7448-2018-61-6-483-493.


Для цитирования:


Романюк Ф.А., Румянцев Ю.В., Румянцев В.Ю., Новаш И.В. Формирование ортогональных составляющих входных токов в микропроцессорных защитах электроустановок. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2021;64(3):191-201. https://doi.org/10.21122/1029-7448-2021-64-3-191-201

For citation:


Romaniuk F.A., Rumiantsev Yu.V., Rumiantsev V.Yu., Novash I.V. Formation of Orthogonal Components of Input Currents in Microprocessor Protections of Electrical Equipment. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2021;64(3):191-201. (In Russ.) https://doi.org/10.21122/1029-7448-2021-64-3-191-201

Просмотров: 77


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)