Preview

Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces. Part 1

https://doi.org/10.21122/1029-7448-2020-63-3-236-252

Abstract

Direct flaring of industrial waste flows specifically in the combustion chambers of heat generating plants makes it possible to significantly reduce the loss of thermal energy, as well as the capital costs of equipping thermal units without using of preliminary furnaces. However, given the increasingly strict environmental standards for the burning of various fuels, it seems important to determine the optimal combustion conditions depending on the composition of the waste products. The article shows that only a complex solution can be a successful solution to the problem of organizing high-quality combustion of industrial waste flows. On the one hand, it is necessary to obtain extremely environmentally friendly combustion products, and, on the other hand, the waste disposal process should be energy efficient. The article discusses the stages of the implementation of the projects of energy-efficient utilization of industrial waste in compliance with the established environmental standards for emissions of pollutants. The analysis of initial combustible chemical substances that are part of solid, liquid and gaseous wastes of industrial technologies is given. The main classes of fuels that determine combustion reactions are identified. Global chemical reactions and oxidation mechanisms are considered. The combustible properties, chemical composition, and degree of impact of the products of combustion of industrial waste on the environment are determined, depending on the content of various starting substances. The most difficult aspect of the flaming disposal of industrial waste flows is the presence of harmful substances of various hazard classes. The conditions for achieving complete fuel combustion, stoichiometry, and equilibrium conditions for different air/fuel ratios (depending on fuel composition) with incomplete combustion are determined. The analysis of products of incomplete combustion is given as well as of and hazard classes of the corresponding pollutants. The maximum value of the coefficient φ was determined beyond which solid carbon should be formed in a homogeneous mixture.

About the Authors

Yu. Р. Yarmolchick
Belarusian National Technical University
Belarus

Address for correspondence: Yarmolchick Yury P. - Belаrusian National Technical University, 65/2, Nezavisimosty Ave., 220013, Minsk, Republic of Belarus. Tel.: +375 17 293-92-16

dr.yury.yarmolchick@gmail.com



R. Schröger
DUMAG GmbH
Austria
Gumpoldskirchen


H. Haberfelner
DUMAG GmbH
Austria
Gumpoldskirchen


M. Pichler
DUMAG GmbH
Austria
Gumpoldskirchen


D. Kostić
DUMAG GmbH
Austria
Gumpoldskirchen


G. V. Moroz
Belnipienergoprom
Belarus
Minsk


References

1. Kartamysheva Е. S., Ivanchenko D. S. (2017) New Technologies for Production Waste Pro-cessing in the Modern World. Molodoi uchenyi [Young Scientist], (51), 115–118 (in Russian).

2. Bernadiner M. N., Shurygin A. P. (2000) Fire Processing and Neutralization of Industrial Waste. Moscow, Khimya Publ. 272 (in Russian).

3. Dobrego K. V., Koznacheev I. A. (2019) Numerical Simulation of Two-Phase System of “Combustible Liquid – Solid Fuel” Combustion in a Fixed Bed. Energetika. Energetika. Izvesti-ya vysshikh uchebnykh zavedenii i energeticheskikh ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 62 (3), 247-263 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-3-247-263

4. Environmental Norms and Rules of EcoNiP 17.01.06-001-2017. Environmental Protection and Nature Management. Environmental Safety Requirements. The Official Publication. Minsk, Ministry of Natural Resources, 2017. 139 (in Russian).

5. Glamazdin P. M., Glamazdin D. P., Yarmolchick Yu. P. (2016) Environmental Aspects of Modernization of High Power Water-Heating Boilers. Energetika. Energetika. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob’edinenii SNG = Energetika. Proceed-ings of CIS Higher Education Institutions and Power Engineering Associations, 59 (3), 249–259. https://doi.org/10.21122/1029-7448-2016-59-3-249-259 (in Russian).

6. Faulstich M., Bilitewski B., Urban A. I. (2006) 11. Fachtagung Thermische Abfallbehandlung. Kassel, Kassel University Press. 350.

7. Niessen W. R. (2010) Combustion and Incineration Processes. Applications in Environmental Engineering. 4th Ed. Boca Raton, Taylor and Francis Group, LLC. 798 https://doi.org/10.1201/EBK1439805039

8. Warnatz J., Maas U., Dibble R. W. (2006) Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments,Pollutant Formation. Berlin Heidelberg: Springer-Verlag. 299. https://doi.org/10.1007/978-3-540-45363-5

9. Kahn R., Dermer O. (1979) Introduction to Chemical Nomenclature. Elsevier Ltd. 208. https://doi.org/10.1016/C2013-0-04129-1

10. Eckert M., Fleischmann G., Jira R., Bolt H. M., Golka K. (2006) Acetaldehyde. Ullmann's Encyclopedia of Industrial Chemistry. Wiley. https://doi.org/10.1002/14356007.a01_031.pub2

11. Shabarov Yu. S. (2011) Organic chemistry. Moscow, Lan’ Publ. 848 (in Russian).

12. Lisitsyn V. N. (1987) Chemistry and Technology of Intermediates. Moscow, Khimya Publ., 368 (in Russian).

13. Bezzubov L. P. (1975) Chemistry of Fats. 3rd Ed. Moscow, Pishchevaya promyshlennost' Publ. 280 (in Russian).

14. Whitford D. (2005) Proteins: Structure and Function. Wiley. 542.

15. Joos F. (2006) Technische Verbrennung. Berlin Heidelberg: Springer-Verlag, 2006. 907. https://doi.org/10.1007/3-540-34334-2

16. Lackner M., Winter F., Agarwal A. K. (2010) Handbook of Combustion. Vol. 1 Fundamentals and Safety. Weinheim, Wiley-VCH. 499. https://doi.org/10.1002/9783527628148

17. Lackner M., Winter F., Agarwal A. K. (2010) Handbook of Combustion. Vol. 3 Gaseous and Liquid Fuels. Weinheim, WILEY-VCH. 460. https://doi.org/10.1002/9783527628148

18. Yarmolchick Y. P. (2019) Formation Mechanisms and Methods for Calculating Pollutant Emis-sions from Natural Gas Combustion Depending on the Burner Emission Class. Energetika. En-ergetika. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob’edinenii SNG = Energeti-ka. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 62 (6), 565-582 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-6-565-582

19. Law C. K. (2006) Combustion Physics. New York, Cambridge University Press. https://doi.org/10.1017/cbo9780511754517

20. Najmi W.M. W.A., Arhosazani A. M. (2006) Comparison of Combustion Performance bitween Natural Gas and Medium Fuel Oiln. International Conference on Energy and Environment (ICEE) 2006. Available at: https://www.researchgate.net/publication/241124165_Comparison_Of_Combustion_Performance_Between_Natural_Gas_And_Medium_Fuel_Oil_At_Different_Firing_Settings_For_Industrial_Boilers

21. Tsuji H., Gupta A. K., Hasegawa T., Katsuki M., Kishimoto K., Morita M. (2003) High Temperature Air Combustion. Boca Raton, CRC Press LLC. 424. https://doi.org/10.1201/9781420041033

22. Charles J., Baukal E. (2013) The John Zink Hamworthy. Combustion Handbook, Fundamentals. Boca Raton, Taylor & Francis Group, LLC. 452. https://doi.org/10.1201/b15101

23. Peters N. (2010) Technische Verbrennung. Berlin Heidelberg, Springer-Verlag (in German).

24. Lackner M., Winter F., Agarwal A. K. (2010) Handbook of Combustion Vol.2: Combustion Diagnostics and Pollutants. Weinheim, WILEY-VCH. 546.

25. Turns S. R. (2000) An Introduction to combustion, Concepts and Applications. 2nd Ed. New York, McGraw-Hil. 676.

26. Watt L. J. (1951) The Production of Acetylene from Methane by partial oxidation. University of British Columbia.

27. Rvu J. Y., Choi K. C., Mulholland J. A. (2006) Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) isomer patterns from municipal waste combustion: formation mechanism fingerprints. Chemosphere, 65 (9), 1526–1536. https://doi.org/10.1016/j.chemosphere.2006.04.002


Review

For citations:


Yarmolchick Yu.Р., Schröger R., Haberfelner H., Pichler M., Kostić D., Moroz G.V. Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces. Part 1. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2020;63(3):236-252. (In Russ.) https://doi.org/10.21122/1029-7448-2020-63-3-236-252

Views: 777


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)