Development of Solar Accumulating Drying Equipment Based on the Theoretical Studies of Solar Energy Accumulation
https://doi.org/10.21122/1029-7448-2020-63-2-174-192
Abstract
The process of heating a dewatered object in an infrared solar drying plant (with paraffin on the bottom) with solar energy storage is considered. To solve this problem, it is assumed that the heat capacity of paraffin exceeds the heat capacity of the dehydrated object. Infrared rays fall on the upper layer, and heat exchange takes place due to heat and mass transfer with the surface air located between the metal plate and the object to be dehydrated. The equations of thermal conductivity for a dewatered object are given, its relationship at the phase interface is determined using the equality of temperature and heat flow. For an exposure of overheating with a period of 6.5 h, the time of passage of the phase boundary in accordance with the law of motion of the spreading (hardening), was determined according to the formula of ξ = α √6,5 h ≅ 12 h.
The optimal thickness of the accumulating paraffin layer was ascertained. On the basis of the theoretical studies, experiments were conducted to study the temperature field of various heataccumulating materials in the laboratory of Tashkent State Technical University. It was found that of all heat-accumulating materials, paraffin has the best heat retention ability when its thickness is of 2–4 cm. The optimal variant of a solar accumulator drying plant with a heat accumulator, viz. paraffin has been designed. In particular, 2–4 cm of paraffin layer with a mass of 50 kg with a corresponding flat surface in terms of specific heat of evaporation is 2400 kJ/kg. The specific melting value of paraffin (150 kJ/kg) allows additional evaporation of 5.8 l of moisture when drying objects. The proposed solar accumulator drying plant can be used for dehydration of medicinal herbs.
About the Authors
J. E. SafarovUzbekistan
Address for correspondence: Safarov Jasur E. – Tashkent State Technical University named after Islam Karimov, 2, University str., 100095, Tashkent, Republic of Uzbekistan. Tel.: +998 71 227-15-18 jasursafarov@yahoo.com
Sh. A. Sultanova
Uzbekistan
Tashkent
G. T. Dadayev
Uzbekistan
Tashkent
References
1. Mondal A. K.; Bansal K. (2015) A Brief History and Future Aspects in Automatic Cleaning Systems for Solar Photovoltaic Panels. Advanced Robotics; 29 (8); 515–524. https://doi.org/10.1080/01691864.2014.996602
2. Soklič A.; Tasbihi M.; Kete M.; Štangar U. L. (2015) Deposition and Possible Influence of a Self-Cleaning Thin TiO2/SiO2 Film on a Photovoltaic Module Efficiency. Catalysis Today. 252; 54–60. https://doi.org/10.1016/j.cattod.2014.10.021
3. Mohammad Sayem Mozumder; Abdel-Hamid Mourad I.; Hifsa Pervez; Riham Surkatti (2019) Recent Developments in Multifunctional Coatings for Solar Panel Applications: A Review. Solar Energy Materials and Solar Cells; 189; 75–102. https://doi.org/10.1016/j.solmat.2018.09.015
4. Aziz F.; Ismail A. F. (2015) Spray Coating Methods for Polymer Solar Cells Fabrication: A Review. Materials Science in Semiconductor Processing; (39); 416–425. https://doi.org/10.1016/j.mssp.2015.05.019
5. Tai Q.; Yan F. (2017) Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials; 29 (34); 1700192. https://doi.org/10.1002/adma.201700192
6. Elminir H. K.; Ghitas A. E.; Hamid R. H.; El-Hussainy F.; Beheary M. M.; Abdel-Moneim K. M. (2006) Effect of dust on the transparent Cover of Solar Collectors. Energy Conversion and Management; 47 (18); 3192–3203. https://doi.org/10.1016/j.enconman.2006.02.014
7. Atkinson C.; Sansom C. L.; Almond H. J.; Shaw C. P. (2015) Coatings for Concentrating Solar Systems – A Review. Renewable and Sustainable Energy Reviews; (45); 113–122. https://doi.org/10.1016/j.rser.2015.01.015
8. Rakhmonov I. U.; Reymov K. M. (2019) Mathematical Models and Algorithms of Optimal Load Management of Electricity Consumers. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 62 (6); 528–535 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-6-528-535
9. Babaev B. J. (2016) Development and Research of Energy Systems Based on Renewable Sources with phase Transitional Heat Accumulation. Maxachkala. 345 (in Russian).
10. Beckman G.; Gilli P. V. (1984) Thermal Energy Storage. Springer. 230 p.
11. Bratenkov V. N.; Khavanov P. V.; Vesker L. Ya. (1988) Heat Supply of Small Settlements. Moscow; Stroiizdat Publ. 223 (in Russian).
12. Grigoriev V. A. (2003) Development of heat Accumulators with a Granular Coolant and Methods for their Calculation Based on Mathematical Modeling. Moscow. 147 (in Russian).
13. Duffie J. A.; Beckman W. A. (2013) Solar Engineering of Thermal Processes. John Wiley & Sons. 910. https://doi.org/10.1002/9781118671603
14. Popel' O. S.; Frid S. E.; Shpil'rain Je. Je.; Izosimov D. B.; Tumanov V. L. (2006) Solar and wind Autonomous Power Plants with Hydrogen Storage. Perspektivy energetiki = Power Engineering Perspectives; 10; 77–90 (in Russian).
15. Oshchepkov M. Yu.; Frid S. E.; Kolobaev M. A. (2015) Stratification in a Solar Tank Accumulator during Rapid Displacement of Hot Water. Applied Solar Energy; 51 (3); 177–182. https://doi.org/10.3103/s0003701x15030093
16. Ol’shanskii A. I.; Zhernosek S. V.; Gusarov A. M. (2018) Experimental Studies of Heat and Moisture Exchange in the Process of Convective Drying of Thin Wet Materials. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 61 (6) 564–578 (in Russian). https://doi.org/10.21122/1029-7448-2018-61-6-564-578
17. Kolomiyets Yu. G.; Popel O. S.; Frid S. E. (2009) Efficiency of Solar Energy Utilization for water heating on the Russian federation Territory. International Scientific Journal for Alternative Energy and Ecology; (6); 16–23.
18. Frid S. E.; Kolomiets Yu. G.; Sushnikova E. V.; Yamuder V. F. (2011) Effectiveness and Prospects of Using Different Solar Water Heating Systems Under the climatic Conditions of the Russian Federation. Thermal Engineering; 58 (11); 910–916. https://doi.org/10.1134/s0040601511110061
19. Kohl M. M.; Meir G.; Papillon P.; Wallner G. M.; Saile S. (2012) Polymeric Materials for Solar Thermal Applications. Weinheim; Wiley-VCH. https://doi.org/10.1002/9783527659609
20. Meyer J. P.; Gesthuizen J. (2014) The Cost Must Be Cut. Sun Wind Energy; (3); 58–59.
21. Popel’ O. S.; Frid S. E.; Mordynskii A. V.; Suleimanov M. Zh.; Arsatov A. V.; Oschepkov M. Yu. (2013) Results of the Development of a Solar Accumulationtype Water Heater Made of Polymer and Composite Materials. Thermal Engineering; 60 (4); 267–269. https://doi.org/10.1134/s0040601513040101
22. Polyakov A. F.; Frid S. E. (2014) Numerical Simulation of Temperature Stratification in an Accumulation Type Solar Water-Heating Installation. High Temperature; 52 (3); 417–423. https://doi.org/10.1134/s0018151x14030225
23. Oshchepkov M. Yu.; Frid S. E. (2015) Thermal Stratification in Storage Tanks of Integrated Collector Storage Solar Water Heaters. Applied Solar Energy; 51(1); 74-82. https://doi.org/10.3103/s0003701x15010107
24. Belsky А. A.; Morenov V. A.; Kupavykh K. S.; Sandyga M. S. (2019) Wind Turbine Electrical Energy Supply System for Oil Well Heating. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 62 (2) 146–154 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-2-146-154
25. Khroustalev B. M.; Tingguo Liu; Akeliev V. D.; Zhongyu Li; Aliakseyeu Yu. G.; Zankаvich V. V. (2019) Heat Resistance and Heat-and-Mass Transfer in Road Pavements. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 62 (6); 536–546 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-6-536-546
26. Smyth M.; Eames P. C.; Norton B. (2006) Integrated Collector Storage Solar Water Heaters. Renewable and Sustainable Energy Reviews; 10 (6); 503–538. https://doi.org/10.1016/j.rser.2004.11.001
27. Hendron R.; Burch J. (2007) Development of Standartizated Domestic Hot Water Event Schedules for Residential Buildings. Proc. Energy Sustainability Conf.; Long Beach; CA. Pap. NREL/CP-55040874. Available at: http://www.nrel.gov/docs/fy08osti/40874.pdf.
28. Babaev B. D.; Danilin V. N.; Hasanaliev A. M. (2002) Calculation of Energy Characteristics of Battery Charging and Discharging Processes Based on the MgO-Mg System. Fiziko-khimicheskii analiz mnogokomponentnykh sistem: Tezisy dokladov II Vserossiiskoi nauchnoi konferentsii [Physicochemical Analysis of Multicomponent Systems: Abstracts of the II All-Russian Scientific Conference]. Makhachkala; Publishing House of the DSPU (SRI ONH); 27–28 (in Russian).
29. Volshanik V. V.; Peshnin A. G.; Hamanjoda U.; Schennikova G. N. (2010) Ecological Basis for the Use of Renewable Energy Sources. Vestnik MGSU; 4 (2); 108–119 (in Russian).
30. Esman A. K.; Kuleshov V. K.; Potachits V. A.; Zykov G. L. (2018) Simulation of Tandem Thin-Film Solar Cell on the Basis of CuInSe2. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 61 (5); 385–395. https://doi.org/10.21122/1029-7448-2018-61-5-385-395
31. Ismashyuva V. A. (1957) Possibilities of using solar energy for drying fruits and vegetables. The use of solar energy: collection. Moscow. 232–247 (in Russian).
32. Khazimov K. M. (2015) Intensification of the Drying Process of Plant Products Using Solar Energy. Almaty. 201 (in Russian).
33. Niles P. W.; Carnegie E. J.; Pohl J. G.; Cherne J. M. (2012) Design and Performance of an aircollector for Indusrial Croop Dehydration. Solar Energy; 1 (20); 19–23. https://doi.org/10.1016/0038-092x(78)90136-6
34. Zakhidov R. A.; Saidov M. S. (2009) Renewable Energy at the Beginning of the XXI Cеntury and Prospects for the Development of Solar Technology in Uzbekistan. Applied Solar Energy; 45 (1); 1-6. https://doi.org/10.3103/s0003701x09010010
35. Golitsyn M. V.; Golitsyn A. M.; Pronin N. M. (2004) Alternative Energy Carriers. Moscow;: Nauka Publ. 159 (in Russian).
36. Butuzov V. A. (2004) Increasing the Efficiency of Heating Systems Based on Renewable Energy Sources. Krasnodar. 297 (in Russian).
37. Avezova N. R.; Samiev K. A.; Khaetov A. R.; Nazarov I. M.; Ergashev Z. Zh.; Samiev M. O.; Suleimanov Sh. I. (2010) Modeling of the Unsteady Temperature Conditions of Solar Greenhouses with a Short-Term Water Heat Accumulator and its Experimental Testing. Applied Solar Energy; 46 (1); 4–7. https://doi.org/10.3103/s0003701x10010020
38. Akhatov Zh. S.; Khalimov A. S. (2015) Numerical Calculations of the Thermal Parameters of a Solar Dryer-Hotbed. Applied Solar Energy; 51 (2); 107-111. https://doi.org/10.3103/s0003701x15020024
39. Abdurakhmanov A. A.; Zaynutdinova Kh. K.; Mamatkosimov M. A.; Payzullakhanov M. S.; Saragoza G. (2012) Solar technologies in Uzbekistan: State; Priorities and Development Prospects. Applied Solar Energy; 48 (2); 84–91. https://doi.org/10.3103/s0003701x1202003x
40. Petroleum Products Information Portal. Available at: http://www.vot-nn.ru/production/paraffin/.
41. Safarov J. E.; Dadaev G. T. (2017) Software of Mathematical Models of the Technology of Drying Medicinal Herbs on a solar-Drying Installation. Agency on Intellectual Property of the Republic of Uzbekistan. Certificate DGU 04385 (in Russian).
42. Safarov J. E.; Sultanova Sh. A.; Dadayev G. T.; Samandarov D. I. (2019) Method for the Primary Processing of Silkworm Cocoons (Bombyx mori). International Journal of Innovative Technology and Exploring Engineering; 9 (1); 4562–4565. https://doi.org/10.35940/ijitee.a5089.119119
43. Safarov J. E.; Sultanova Sh. A.; Dadayev G. T.; Samandarov D. I. (2019) Method for Drying Fruits of Rose Hips. International Journal of Innovative Technology and Exploring Engineering. 9 (1); 3765–3768. https://doi.org/10.35940/ijitee.a4716.119119
Review
For citations:
Safarov J.E., Sultanova Sh.A., Dadayev G.T. Development of Solar Accumulating Drying Equipment Based on the Theoretical Studies of Solar Energy Accumulation. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2020;63(2):174-192. (In Russ.) https://doi.org/10.21122/1029-7448-2020-63-2-174-192