Preview

ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations

Advanced search

Ensuring the Reliability and Efficiency of the Power Industry in the Agricultural Sector of the Republic of Belarus in Modern Conditions

https://doi.org/10.21122/1029-7448-2020-63-2-116-128

Abstract

The necessity of improving the power supply system in the agricultural sector is substantiated by the growing share of first-category loads that require targeted reliability. Improving values of the technical and economic indicators of centralized energy generation and its transmission through main and distribution grids cannot ensure high reliability of consumers of the first category, the number of which is constantly growing in agriculture. It is noted that if the power system in outage of the generating source of the high power supply is provided by inputting the emergency reserve, then at emergency switching-off phase of the section of the mains, power supply of the consumers powered by the schemes for both radial and looped distribution network may be absent for a long period of time (several hours). The ways and methods of improving the power supply system, such as integration of a single power system with distributed generation sources, ensuring their parallel operation, load management using complex tariffs for electric energy that take into account the form of load schedules, modernization of technological processes taking into account their automation and improvement of technical and economic indicators, are considered. Taking into account the increase in electricity consumption for heating and hot water supply, we consider the option of eliminating cross-subsidization, which stimulates the interest of consumers in saving electricity and reducing the fee for electricity consumption by changing the operating modes of equipment and devices. The analysis of promising energy-saving measures in agricultural power engineering demonstrated that routine measures are being supplemented by other measures induced by the fact that power electronics and microprocessor technology have significantly advanced in their development in the agricultural energy sector over the past decades, for example, for frequency control of asynchronous motors equipped by a short-circuited rotor that has high values of energy and dynamic indicators. Since there are a number of technologies in agriculture where electric energy is used without the electric drive units application and each of the technological processes has its own requirements for the reliability and quality of electric energy, the scheme of mutual redundancy from adjacent substations using distributed generation sources and technical means of automated energy accounting, control and management of electrical loads, is considered.

About the Authors

I. V. Protosovitskii
Belarusian State Agrarian Technical University
Belarus
Minsk


E. P. Zabello
Belarusian State Agrarian Technical University
Belarus

Address for correspondence: Zabello Evgenii P. – Belarusian State Agrarian Technical University, 99, Nezavisimosty Ave., 220023, Minsk, Republic of Belarus. Tel.: +375 17 377-63-42     kafeshp@tut.by



M. A. Prishchepov
Belarusian State Agrarian Technical University
Belarus
Minsk


V. A. Daineko
Belarusian State Agrarian Technical University
Belarus
Minsk


References

1. Mondal A. K.; Bansal K. (2015) A Brief History and Future Aspects in Automatic Cleaning Systems for Solar Photovoltaic Panels. Advanced Robotics; 29 (8); 515–524. https://doi.org/10.1080/01691864.2014.996602

2. Soklič A.; Tasbihi M.; Kete M.; Štangar U. L. (2015) Deposition and Possible Influence of a Self-Cleaning Thin TiO2/SiO2 Film on a Photovoltaic Module Efficiency. Catalysis Today. 252; 54–60. https://doi.org/10.1016/j.cattod.2014.10.021

3. Mohammad Sayem Mozumder; Abdel-Hamid Mourad I.; Hifsa Pervez; Riham Surkatti (2019) Recent Developments in Multifunctional Coatings for Solar Panel Applications: A Review. Solar Energy Materials and Solar Cells; 189; 75–102. https://doi.org/10.1016/j.solmat.2018.09.015

4. Aziz F.; Ismail A. F. (2015) Spray Coating Methods for Polymer Solar Cells Fabrication: A Review. Materials Science in Semiconductor Processing; (39); 416–425. https://doi.org/10.1016/j.mssp.2015.05.019

5. Tai Q.; Yan F. (2017) Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials; 29 (34); 1700192. https://doi.org/10.1002/adma.201700192

6. Elminir H. K.; Ghitas A. E.; Hamid R. H.; El-Hussainy F.; Beheary M. M.; Abdel-Moneim K. M. (2006) Effect of dust on the transparent Cover of Solar Collectors. Energy Conversion and Management; 47 (18); 3192–3203. https://doi.org/10.1016/j.enconman.2006.02.014

7. Atkinson C.; Sansom C. L.; Almond H. J.; Shaw C. P. (2015) Coatings for Concentrating Solar Systems – A Review. Renewable and Sustainable Energy Reviews; (45); 113–122. https://doi.org/10.1016/j.rser.2015.01.015

8. Rakhmonov I. U.; Reymov K. M. (2019) Mathematical Models and Algorithms of Optimal Load Management of Electricity Consumers. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 62 (6); 528–535 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-6-528-535

9. Babaev B. J. (2016) Development and Research of Energy Systems Based on Renewable Sources with phase Transitional Heat Accumulation. Maxachkala. 345 (in Russian).

10. Beckman G.; Gilli P. V. (1984) Thermal Energy Storage. Springer. 230 p.

11. Bratenkov V. N.; Khavanov P. V.; Vesker L. Ya. (1988) Heat Supply of Small Settlements. Moscow; Stroiizdat Publ. 223 (in Russian).

12. Grigoriev V. A. (2003) Development of heat Accumulators with a Granular Coolant and Methods for their Calculation Based on Mathematical Modeling. Moscow. 147 (in Russian).

13. Duffie J. A.; Beckman W. A. (2013) Solar Engineering of Thermal Processes. John Wiley & Sons. 910. https://doi.org/10.1002/9781118671603

14. Popel' O. S.; Frid S. E.; Shpil'rain Je. Je.; Izosimov D. B.; Tumanov V. L. (2006) Solar and wind Autonomous Power Plants with Hydrogen Storage. Perspektivy energetiki = Power Engineering Perspectives; 10; 77–90 (in Russian).

15. Oshchepkov M. Yu.; Frid S. E.; Kolobaev M. A. (2015) Stratification in a Solar Tank Accumulator during Rapid Displacement of Hot Water. Applied Solar Energy; 51 (3); 177–182. https://doi.org/10.3103/s0003701x15030093

16. Ol’shanskii A. I.; Zhernosek S. V.; Gusarov A. M. (2018) Experimental Studies of Heat and Moisture Exchange in the Process of Convective Drying of Thin Wet Materials. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 61 (6) 564–578 (in Russian). https://doi.org/10. 21122/1029-7448-2018-61-6-564-578

17. Kolomiyets Yu. G.; Popel O. S.; Frid S. E. (2009) Efficiency of Solar Energy Utilization for water heating on the Russian federation Territory. International Scientific Journal for Alternative Energy and Ecology; (6); 16–23.

18. Frid S. E.; Kolomiets Yu. G.; Sushnikova E. V.; Yamuder V. F. (2011) Effectiveness and Prospects of Using Different Solar Water Heating Systems Under the climatic Conditions of the Russian Federation. Thermal Engineering; 58 (11); 910–916. https://doi.org/10.1134/s0040601511110061

19. Kohl M. M.; Meir G.; Papillon P.; Wallner G. M.; Saile S. (2012) Polymeric Materials for Solar Thermal Applications. Weinheim; Wiley-VCH. https://doi.org/10.1002/9783527659609

20. Meyer J. P.; Gesthuizen J. (2014) The Cost Must Be Cut. Sun Wind Energy; (3); 58–59.

21. Popel’ O. S.; Frid S. E.; Mordynskii A. V.; Suleimanov M. Zh.; Arsatov A. V.; Oschepkov M. Yu. (2013) Results of the Development of a Solar Accumulationtype Water Heater Made of Polymer and Composite Materials. Thermal Engineering; 60 (4); 267–269. https://doi.org/10.1134/s0040601513040101

22. Polyakov A. F.; Frid S. E. (2014) Numerical Simulation of Temperature Stratification in an Accumulation Type Solar Water-Heating Installation. High Temperature; 52 (3); 417–423. https://doi.org/10.1134/s0018151x14030225

23. Oshchepkov M. Yu.; Frid S. E. (2015) Thermal Stratification in Storage Tanks of Integrated Collector Storage Solar Water Heaters. Applied Solar Energy; 51(1); 74-82. https://doi.org/10.3103/s0003701x15010107

24. Belsky А. A.; Morenov V. A.; Kupavykh K. S.; Sandyga M. S. (2019) Wind Turbine Electrical Energy Supply System for Oil Well Heating. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 62 (2) 146–154 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-2-146-154

25. Khroustalev B. M.; Tingguo Liu; Akeliev V. D.; Zhongyu Li; Aliakseyeu Yu. G.; Zankаvich V. V. (2019) Heat Resistance and Heat-and-Mass Transfer in Road Pavements. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 62 (6); 536–546 (in Russian). https://doi.org/10. 21122/1029-7448-2019-62-6-536-546

26. Smyth M.; Eames P. C.; Norton B. (2006) Integrated Collector Storage Solar Water Heaters. Renewable and Sustainable Energy Reviews; 10 (6); 503–538. https://doi.org/10.1016/j.rser.2004.11.001

27. Hendron R.; Burch J. (2007) Development of Standartizated Domestic Hot Water Event Schedules for Residential Buildings. Proc. Energy Sustainability Conf.; Long Beach; CA. Pap. NREL/CP-55040874. Available at: http://www.nrel.gov/docs/fy08osti/40874.pdf.

28. Babaev B. D.; Danilin V. N.; Hasanaliev A. M. (2002) Calculation of Energy Characteristics of Battery Charging and Discharging Processes Based on the MgO-Mg System. Fiziko-khimicheskii analiz mnogokomponentnykh sistem: Tezisy dokladov II Vserossiiskoi nauchnoi konferentsii [Physicochemical Analysis of Multicomponent Systems: Abstracts of the II All-Russian Scientific Conference]. Makhachkala; Publishing House of the DSPU (SRI ONH); 27–28 (in Russian).

29. Volshanik V. V.; Peshnin A. G.; Hamanjoda U.; Schennikova G. N. (2010) Ecological Basis for the Use of Renewable Energy Sources. Vestnik MGSU; 4 (2); 108–119 (in Russian).

30. Esman A. K.; Kuleshov V. K.; Potachits V. A.; Zykov G. L. (2018) Simulation of Tandem Thin-Film Solar Cell on the Basis of CuInSe2. Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations; 61 (5); 385–395. https://doi.org/10.21122/1029-7448-2018-61-5-385-395

31. Ismashyuva V. A. (1957) Possibilities of using solar energy for drying fruits and vegetables. The use of solar energy: collection. Moscow. 232–247 (in Russian).

32. Khazimov K. M. (2015) Intensification of the Drying Process of Plant Products Using Solar Energy. Almaty. 201 (in Russian).

33. Niles P. W.; Carnegie E. J.; Pohl J. G.; Cherne J. M. (2012) Design and Performance of an aircollector for Indusrial Croop Dehydration. Solar Energy; 1 (20); 19–23. https://doi.org/10.1016/0038-092x(78)90136-6

34. Zakhidov R. A.; Saidov M. S. (2009) Renewable Energy at the Beginning of the XXI Cеn-

35. tury and Prospects for the Development of Solar Technology in Uzbekistan. Applied Solar Energy; 45 (1); 1-6. https://doi.org/10.3103/s0003701x09010010

36. Golitsyn M. V.; Golitsyn A. M.; Pronin N. M. (2004) Alternative Energy Carriers. Moscow;: Nauka Publ. 159 (in Russian).

37. Butuzov V. A. (2004) Increasing the Efficiency of Heating Systems Based on Renewable Energy Sources. Krasnodar. 297 (in Russian).

38. Avezova N. R.; Samiev K. A.; Khaetov A. R.; Nazarov I. M.; Ergashev Z. Zh.; Samiev M. O.; Suleimanov Sh. I. (2010) Modeling of the Unsteady Tempe-

39. rature Conditions of Solar Greenhouses with a Short-Term Water Heat Accumulator and its

40. Experimental Testing. Applied Solar Energy; 46 (1); 4–7. https://doi.org/10.3103/s0003701x10010020

41. Akhatov Zh. S.; Khalimov A. S. (2015) Numerical Calculations of the Thermal Parameters of a Solar Dryer-Hotbed. Applied Solar Energy; 51 (2); 107-111. https://doi.org/10.3103/s0003701x15020024

42. Abdurakhmanov A. A.; Zaynutdinova Kh. K.; Mamatkosimov M. A.; Payzullakhanov M. S.; Saragoza G. (2012) Solar technologies in Uzbekistan: State; Priorities and Development Prospects. Applied Solar Energy; 48 (2); 84–91. https://doi.org/10.3103/s0003701x1202003x

43. Petroleum Products Information Portal. Available at: http://www.vot-nn.ru/production/paraffin/.

44. Safarov J. E.; Dadaev G. T. (2017) Software of Mathematical Models of the Technology of Drying Medicinal Herbs on a solar-Drying Installation. Agency on Intellectual Property of the Republic of Uzbekistan. Certificate DGU 04385 (in Russian).

45. Safarov J. E.; Sultanova Sh. A.; Dadayev G. T.; Samandarov D. I. (2019) Method for the Primary Processing of Silkworm Cocoons (Bombyx mori). International Journal of Innovative Technology and Exploring Engineering; 9 (1); 4562–4565. https://doi.org/10.35940/ijitee.a5089.119119

46. Safarov J. E.; Sultanova Sh. A.; Dadayev G. T.; Samandarov D. I. (2019) Method for Drying Fruits of Rose Hips. International Journal of Innovative Technology and Exploring Engineering. 9 (1); 3765–3768. https://doi.org/10.35940/ijitee.a4716.119119


Review

For citations:


Protosovitskii I.V., Zabello E.P., Prishchepov M.A., Daineko V.A. Ensuring the Reliability and Efficiency of the Power Industry in the Agricultural Sector of the Republic of Belarus in Modern Conditions. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2020;63(2):116-128. (In Russ.) https://doi.org/10.21122/1029-7448-2020-63-2-116-128

Views: 2007


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)