Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск

Моделирование тонкопленочных солнечных элементов со структурой халькопирита CuInSe2

https://doi.org/10.21122/1029-7448-2020-63-1-5-13

Полный текст:

Аннотация

С помощью численного моделирования определены рабочие температуры тонкопленочного солнечного элемента на основе CuInSe2 и оптимизированы значения плотности мощности солнечного излучения, при которых не требуется стабилизация температурного режима данного элемента. Максимально возможное значение КПД ~14,8 % достигается при реальных условиях эксплуатации и поддерживается за счет поступающей тепловой энергии, как выделяющейся в этом элементе, так и инфракрасных излучений – солнца и окружающей среды. Модель предлагаемого тонкопленочного солнечного элемента была реализована в программной среде COMSOL Multiphysics с использованием модуля «Теплопередача». Определены рабочие температуры солнечного элемента без термостабилизации в условиях сезонного и суточного изменения температуры окружающей среды и плотности мощности солнечного излучения спектра AM1,5, максимальное значение которой варьировалось в пределах от 1 до 500 кВт/м2 при использовании концентраторов. Полученные значения рабочих температур тонкопленочного солнечного элемента использовались при определении основных его параметров в программе SCAPS-1D. Приведены графики зависимостей рабочей температуры, коэффициента полезного действия и коэффициента заполнения тонкопленочного солнечного элемента от плотности мощности солнечного излучения. Показано, что для получения максимально возможного КПД солнечного элемента необходимо использовать концентрированное солнечное излучение с максимальным значением плотности мощности 8 кВт/м2 в июле и 10 кВт/м2 в январе. В случае более низких и высоких этих величин необходима соответствующая термостабилизация рассматриваемого элемента. Также рассчитаны зависимости КПД, коэффициента заполнения и напряжения холостого хода от температуры стабилизации солнечного элемента, градиенты температур на границах раздела термоэлектрического слоя. Показано, что при выборе оптимальных значений термостабилизации эффективность предлагаемого солнечного элемента может составлять порядка 15 % и более.

Об авторах

А. К. Есман
Белорусский национальный технический университет
Беларусь

Адрес для переписки: Есман Александр Константинович – Белорусский национальный технический университет, просп. Независимости, 65, 220013, г. Минск, Республика Беларусь. Тел.: +375 17 331-00-50     ak_esman@bntu.by



Г. Л. Зыков
Белорусский национальный технический университет
Беларусь
г. Минск


В. А. Потачиц
Белорусский национальный технический университет
Беларусь
г. Минск


В. К. Кулешов
Белорусский национальный технический университет
Беларусь
г. Минск


Список литературы

1. Flexible CuInSe2 nanocrystal solar cells on paper / V. R. Voggu [et al.] // ACS Energy Lett. 2017. Vol. 2, No 3. P. 574–581. https://doi.org/10.1021/acsenergylett.7b00001

2. Solar Cell Efficiency Tables (version 53) / M. A. Green [et al.] // Progress in Photovoltaics: Research and Applications. 2019. Vol. 27. P. 3–12. https://doi.org/10.1002/pip.3102

3. Properties of Cu(In,Ga)Se2 Solar Cells with New Record Efficiencies Up to 21.7 % / P. Jackson [et al.] // Phys. Status Solidi – Rapid Res. Lett. 2015. Vol. 9, Iss. 1. P. 28–31. https://doi.org/10.1002/pssr.201409520

4. Effects of Heavy Alkali Elements in Cu(In,Ga)Se2 Solar Cells with Efficiencies Up to 22.6% / P. Jackson [et al.] // Phys. Status Solidi – Rapid Res. Lett. 2016. Vol. 10, Iss. 8. P. 583–586. https://doi.org/10.1002/pssr.201670747

5. Mandati, S. Pulsed Electrochemical Deposition of CuInSe2 and Cu(In,Ga)Se2 Semiconductor Thin-Films / S. Mandati, B. Sarada, S. R. Dey, S. V. Joshi // Semiconductors – Growth and Characterization. 2018. P. 109–132. https://doi.org/10.5772/intechopen.71857

6. Heriche, H. New Ultra Thin CIGS Structure Solar Cells Using SCAPS Simulation Program / H. Heriche, Z. Rouabah, N. Bouarissa // International Journal of Hydrogen Energy. 2017. Vol. 42, Iss. 15. P. 9524–9532. https://doi.org/10.1016/j.ijhydene.2017.02.099

7. Singh, P. Temperature Dependence of I V Characteristics and Performance Parameters of Silicon Solar Cell / P. Singh, S. N. Singh, M. Lal, M. Husain // Solar Energy Materials and Solar Cells. 2008. Vol. 92, Iss. 12. P. 1611–1616. https://doi.org/10.1016/j.solmat.2008.07.010

8. Способ изготовления тонкопленочного солнечного элемента: пат. 20481 Респ. Беларусь: МПК H 01L 31/18, H 01L 31/0264 / А. К. Есман, В. К. Кулешов, Г. Л. Зыков и др.; дата публ. 30.10.2016.

9. Analyze thermal effects with the Heat Transfer Module. COMSOL, Inc. USA. Режим доступа: https://www.comsol.com/heat-transfer-module (Дата доступа: 10.05.2019).

10. Моделирование тандемного тонкопленочного солнечного элемента на основе CuInSe2 / А. К. Есман [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2018. Т. 61, № 5. С. 385–395. https://doi.org/10.21122/1029-2018-61-5-385-395.

11. Есман, А. К. Моделирование характеристик солнечного элемента на основе CuInSe2 / А. К. Есман, Г. Л. Зыков, В. А. Потачиц // Приборостроение – 2018: материалы 11-й Междунар. Науч.-техн. конф., 14–16 ноября 2018 года, Минск, Республика Беларусь / Белорусский национальный технический университет; редкол.: О.К. Гусев [и др.]. Минск: БНТУ, 2018. С. 279–281.

12. Verschraegen, J. Numerical Modeling of Intraband Tunneling for Heterojunction Solar Cells in SCAPS / J. Verschraegen, M. Burgelman // Thin Solid Films. 2007. Vol. 515, Iss. 15. P. 6276–6279. https://doi.org/10.1016/j.tsf.2006.12.049

13. Decock, K. Modelling Multivalent Defects in Thin-Film Solar Cells / K. Decock, S. Khelifi, M. Burgelman // Thin Solid Films. 2011. Vol. 519, Iss. 21. P. 7481–7484. https://doi.org/10.1016/j.tsf.2010.12.039

14. Есман, А. К. Повышение энергоэффективности тонкопленочных солнечных элементов на основе соединения CuIn1-xGaxSe2 / А. К. Есман, В. А. Потачиц, Г. Л. Зыков // Проблемы физики, математики и техники. 2016. № 1 (26). С. 30–33.


Для цитирования:


Есман А.К., Зыков Г.Л., Потачиц В.А., Кулешов В.К. Моделирование тонкопленочных солнечных элементов со структурой халькопирита CuInSe2. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2020;63(1):5-13. https://doi.org/10.21122/1029-7448-2020-63-1-5-13

For citation:


Esman A.K., Zykov G.L., Potachits V.A., Kuleshov V.K. Simulation of Thin-Film Solar Cells with a CuInSe2 Chalcopyrite Structure. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2020;63(1):5-13. https://doi.org/10.21122/1029-7448-2020-63-1-5-13

Просмотров: 132


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)