Formation Mechanisms and Methods for Calculating Pollutant Emissions from Natural Gas Combustion Depending on the Burner Emission Class
https://doi.org/10.21122/1029-7448-2019-62-6-565-582
Abstract
The combustion of hydrocarbon fuels in the chambers of heat generating plants is one of the main sources of pollutant emissions. Environmental standards and rules that limit emissions are becoming more stringent and their implementation requires the introduction of advanced technologies and equipment. The main device in combustion systems are blow burners, the design of which largely determines the level of emission. The article considers factors that intensify the formation of normalized pollutants, provides global chemical reactions, various types of mechanisms, and kinetic schemes. Based on the analysis of modern methods for reducing harmful emissions, the most effective design solutions for mixing devices, nozzles and systems for distributing the flow of fuel and air supplied to combustion are determined. A comparative analysis of the methods and conditions for determining the emission class of the burner device is carried out depending on the selected units of measure, the coefficient of excess air (oxygen concentration in flue gases), air humidity and the initial composition of natural gas using examples of EU and EAC standards. The methodology for calculating the emissions of nitrogen oxides depending on the measurement conditions is given. The conversion factors for the values of pollutant emissions from the accepted units in the EU (mg/(kW×h)) into the units indicated according to the EAC environmental rules (mg/m3) taking into account the respectively normalized coefficient of excess air are obtained. As a result of the calculations, the types of burners were determined by emission classes corresponding to the applicable environmental standards and rules in the Republic of Belarus, depending on the heat output of the boiler plants.
About the Author
Yu. P. YarmolchickBelarus
Address for correspondence: Yarmolchick Yury P. – Belаrusian National Technical University, 65/2 Nezavisimosty Ave.,, 220013, Minsk, Republic of Belarus. Tel.: +375 17 293-92-16 dr.yury.yarmolchick@gmail.com
References
1. Environmental Norms and Rules of EcoNiP 17.01.06-001–2017. Environmental Protection and Nature Management. Environmental Safety Requirements. Minsk, Ministry of Natural Resources, 2017. 139 (in Russian).
2. Glamazdin P. M., Glamazdin D. P., Yarmolchik Yu. P. (2016) Environmental Aspects of the Modernization of Large Capacity Boilers. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 59 (3), 249–259 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-3-249-259.
3. E DIN EN 676:2017–02 (D/E) Gebläsebrenner Für Gasförmige Brennstoffe; Deutsche und Englische Fassung FprEN 676: 2016. https://doi.org/10.31030/2569183.
4. Zubarev D. N. (1990) Efficiency. Physical Encyclopedia. Vol. 2. Moscow, Sovetskaya Entsiklopediya Publ., 484–485 (in Russian).
5. Formulas Guide. To Calculate Data in Heat Engineering. Available at: https://www.weishaupt.ru/service/complex/pdf/1841_RU_Januar_2015.pdf. (Accessed 30 September 2019).
6. Pocket Formula Guide. SAACKE. Available at: https://www2.saacke.com/fileadmin/Media/Documents/pdfs/EN/Addresses_and_useful_things/Faustformeln_Pocket-Formula-Guide_english.pdf. (Accessed 30 September 2019).
7. Nekrasov B. V. (1973) Fundamentals of General Chemistry. Vol. I. Moscow, Khimiya Publ., 495–597, 511–513 (in Russian).
8. Korolchenko A. Ya. (2007) Combustion Processes. Moscow, Pozhnauka Publ. 266 (in Russian).
9. Esman R. I., Yarmolchik Yu. P. (2009) Analysis of Burning Processes in Turbulent Mixing Axial and Tangential Flows. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, (2), 47–52 (in Russian).
10. Zeldovich Ya. B., Sadovnikov P. Ya., Frank-Kamenetskiy D. A. (1947) Oxidation of Nitrogen During Combustion. Moscow, Publishing House of the Academy of Sciences of the USSR. 148 (in Russian).
11. Fenimore C. P., Jones G. W. (1957) Nitric Oxide Decomposition at 2200–2400 K. The Journal of Physical Chemistry, 61 (5), 654–657. https://doi.org/10.1021/j150551a034.
12. Fenimore C. P. (1971) Formation of Nitric Oxide in Premixed Hydrocarbon Flames. Symposium (International) on Combustion, 13 (1), 373–380. https://doi.org/10.1016/s0082-0784(71) 80040-1.
13. Lamoureux N., Desgroux P., El Bakali A., Pauwels J. F. (2010) Experimental and Numerical Study of the Role of NCN in Prompt-NO Formation in Low-Pressure CH4–O2–N2 and C2H2– O2–N2 Flames. Combustion and Flame, 157 (10), 1929–1941. https://doi.org/10.1016/j.combustflame.2010.03.013.
14. Lehto Steve (2010) Chrysler's Turbine Car: the Rise and Fall of Detroit's Coolest Creation. Chicago, IL: Chicago Review Press, 2010. 228.
15. Glarborg E. A. (2003) Fuel Nitrogen Conversion in Solid Fuel Fired Systems. Progress in Energy and Combustion Science, 29 (2), 89–113. https://doi.org/10.1016/s0360-1285(02)00031-x.
16. Kotler V. R. Selective Catalytic Reduction. Available at: http://osi.ecopower.ru/ru/Documents/attachments/1131rus.pdf. (Accessed 30 September 2019) (in Russian).
17. Kotler V. R. Selective Non-Catalytic Recovery. Available at: http://osi.ecopower.ru/ru/Documents/attachments/1132rus.pdf. (Accessed 30 September 2019) (in Russian).
18. Regulation (EU) 2016/426 of the European Parliament and of the Council of 9 March 2016 on Appliances Burning Gaseous Fuels and Repealing Directive 2009/142/EC. Available at: https://eur-lex.europa.eu/eli/reg/2016/426/oj.
19. Gurevich M. I. (1979) The Theory of Jets of Ideal Fluid. Moscow, Nauka Publ. 536 (in Russian).
20. Yarmolchick Yu. P. (2017) Technological Modes of the Processes of Burning Multidisperse Solid Fuel in Energy-Generating Devices. Nauka – Obrazovaniyu, Proizvodstvu, Ekonomike: Materialy 15-i Mezhdunarodnoi Nauchno-Tekhnicheskoi Konferentsii. T. 1 [Science – Education, Production, Economics: Materials of the 15th International Scientific and Technical Conference. Vol. 1]. Minsk, BNTU, 121 (in Russian).
21. Yarmolchick Yu. P. (2016) Scientific Basis for Organizing a Stable Air Flow with Optimally Distributed Particles of Dispersed Solid Fuel for Flaring. Nauka – Obrazovaniyu, Proizvodstvu, Ekonomike: Materialy 14-i Mezhdunarodnoi Nauchno-Tekhnicheskoi Konferentsii. T. 1 [Science – Education, Production, Economics: Materials of the 14th International Scientific and Technical Conference. Vol. 1]. Minsk, BNTU, 118 (in Russian).
22. Yarmolchick Yu. P. (2016) Thermoand Gas-Dynamic Fundamentals of the Processes of Burning Multidisperse Solid Fuel. Nauka – Obrazovaniyu, Proizvodstvu, Ekonomike: Materialy 14-i Mezhdunarodnoi Nauchno-Tekhnicheskoi Konferentsii. T. 1 [Science – Education, Production, Economics: Materials of the 14th International Scientific and Technical Conference. Vol. 1]. Minsk, BNTU, 116 (in Russian).
23. Der Arbeitsausschuss NA 041-01-63 AA “Gasbrenner mit Gebläse (SpA CEN/TC 131)” (in German).
24. Vukalovich M. P., Altunin V. V. (965) Thermophysical Properties of Carbon Dioxide. Moscow, Atomizdat Publ. 456 (in Russian).
25. Alexandrov A. A., Orlov K. A., Points V. F. (2009) Thermophysical Properties of Working Substances of a Power System. Moscow, Publishing House MPEI. 224 (in Russian).
26. https://static-int.testo.com/media/47/7a/aa9e1a678d4a/prakticheskoe-rukovodstvo-izmeritelnyetekhnologii-dlya-sistem-otopleniya.pdf. (Accessed 30 September 2019) (in Russian).
27. Pol 02 NOx Emissions (All Buildings) T. Available at: http://www.breeam.com/BREEAMInt 2013SchemeDocument/content/12_pollution/pol_02.htm. (Accessed 30 September 2019).
28. State Standard R 51383–99. Automatic Gas Burners with Forced Air Supply. Technical Requirements, Safety Requirements and Test Methods. Moscow, IPK Standards Publishing House, 2004 (in Russian).
29. State Standard 5542–2014. Combustible Natural Gases for Industrial and Domestic Purposes. Technical Conditions. Moscow, Standartinform, 2015 (in Russian).
30. Quality of Supply Gas. Available at: http://kkconstanta.com/publikacii/kachestvo-postavljaemogo-gaza/. (Accessed 30 September 2019) (in Russian).
31. Thermal Balance of the Combustion Process. Available at: http://helpiks.org/5-91746.html. (Accessed 30 September 2019) (in Russian).
32. Air Composition. The Engineering ToolBox. Available at: https://www.engineeringtoolbox.com/air-composition-d_212.html). (Accessed 30 September 2019).
33. Glinka N. L., Ermakova A. I. (ed.) (2005) General Chemistry. Moscow, INTEGRAL-PRESS Publ. 728 (in Russian).
34. Molar Volume of Ideal Gas. Fundamental Physical Constants. Available at: https://physics. nist.gov/cgi-bin/cuu/Value?mvolstd. (Accessed 30 September 2019).
35. Gay-Lussac J. L. (1802) Recherches Sur la Dilatation des Gaz et des Vapeurs. Annales de Chimie, XLIII, 137.
36. Matveev A. N. (1981) Molecular Physics. Moscow, Vysshaya Shkola Publ. 400 (in Russian).
37. Sivukhin D. V. (1990) General Course of Physics. Vol. II. Thermodynamics and Molecular Physics. Moscow, Nauka Publ. 592 (in Russian).
38. Berthelot D. J. (1899) Sur Une Méthode Purement Physique Pour La Détermination des Poids Moléculaires des Gaz et des Poids Atomiques de Leurs Éléments. Journal de Physique Théorique et Appliquée, 8 (1), 263–274. https://doi.org/10.1051/jphystap:018990080026300.
39. Soave G. (1972) Equilibrium Constants from a Modified Redlich – Kwong Equation of State. Chemical Engineering Science, 27 (6), 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4.
40. Combustion Calculations, Formulas Optima 7. Neckarsulm-Obereisesheim: MRU GmbH, R&D, TW, 06.07.2011. 6.
41. Wünning J. A., Wünning J. G. (1997) Flameless Oxidation to Reduce Thermal NO-Formation. Progress in Energy and Combustion Science, 23 (1), 83–94. https://doi.org/10.1016/s03601285(97)00006-3.
Review
For citations:
Yarmolchick Yu.P. Formation Mechanisms and Methods for Calculating Pollutant Emissions from Natural Gas Combustion Depending on the Burner Emission Class. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2019;62(6):565-582. https://doi.org/10.21122/1029-7448-2019-62-6-565-582