Heat Resistance and Heat-and-Mass Transfer in Road Pavements
https://doi.org/10.21122/1029-7448-2019-62-6-536-546
Abstract
About the Authors
B. M. KhroustalevBelarus
Address for correspondence: Khroustalev Boris M. – Belarusian National Technical University, 65 Nezavisimosty Ave., 220013, Minsk, Republic of Belarus. Tel.: +375 17 265-96-56 tgv_fes@bntu.by
. Liu Tingguo
China
Henan Province
V. D. Akeliev
Belarus
Minsk
. Li Zhongyu
China
Henan Province
H. Yu. Aliakseyeu
Belarus
Minsk
V. V. Zankаvich
China
Henan Province
References
1. Sabai M. M. (2013) Construction and Demolition Waste Recycling into Innovative Building Materials for Sustainable Construction in Tanzania. Eindhoven University of Technology. Eindhoven, Technische Universiteit Eindhoven. https://doi.org/10.6100/IR757934.
2. Bazaz J. B., Khayati M. (2012) Properties and Performance of Concrete Made with Recycled Low-Quality Crushed Brick. Journal of Materials in Civil Engineering, 24 (4), 330–338. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000385.
3. Lalla J. R. F., Mwasha A. (2014) Investigating the Compressive Strengths of Guanapo Recycled Aggregate Concrete as Compared to That of its Waste Material. West Indian Journal of Engineering, 36 (2), 12–19.
4. Khroustalev B. M., Nesenchuk A. P., Timoshpolsky V. I., Akeliev V. D., Sednin V. A., Kopko V. M., Nerezko A. V. (2007) Heat and Mass Transfer. Part 1. Minsk, Belarusian National Technical University. 606 (in Russian).
5. Khrustalev B. M., Nesenchuk A. P., Akeliev V. D., Sednin V. A., Kopko V. M., Timoshpol’skii V. I., Sednin A. V., Nerez’ko A. V. (2009) Heat and Mass Transfer. Part 2. Minsk, Belarusian National Technical University, 273 (in Russian).
6. Khroustalev B. M., Tingguo Liu, Akeliev V. D., Aliakseyeu Yu. H., Jicun Shi, Zankovich V. V. (2018) Specific Features of Heat-and-Mass Transfer Processes in Road Dressings. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 61 (6), 517–526 (in Russian). https://doi.org/10.21122/1029-7448-2018-61-6-517-526.
7. Pshembaev M. K., Kovalev Ya. N., Akeliev V. D. (2015) Estimation of Concrete Pavement Temperature Fields and their Gradients. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Obedinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, (4), 54–63 (in Russian).
8. Fraile-Garcia E., Ferreiro-Cabello J., López-Ochoa L. M., López-González L. M. (2017) Study of Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in ReadyMix Concrete Production. Materials, 10 (7), 817. https://doi.org/10.3390/ma10070817.
9. Teltaev B. B. (2015) Regular Features in Self-Organization of Low-Temperature Cracking in Asphalt-Concrete Road Pavement. Doklady Natsionalnoi Akademii Nauk Respubliki Kazakhstan = Reports of the National Academy of Sciences of Republic of Kazakhstan, (4), 40–65 (in Russian).
10. Amarasiri A., Grenfell J. (2015) Numerical Modeling of Thermal Cracking of Pavements. International Journal of Pavement Research & Technolog, 8 (2), 85–93. https://doi.org/10.6135/ijprt.org.tw/2015.8(2).85.
11. Schlichting H. (1960) Boundary-Layer Theory. New York: McGraw-Hill.
12. Pekhovich A. I., Zhidkikh V. M. (1976) Calculation of Thermal Regime for Solid Bodies. Leningrad, Energiya Publ. 352 (in Russian).
13. Bogoslovskii V. N. (1982) Building Engineering Thermal Physics: Thermophysical Fundamentals on Air Heating, Ventilation and Conditioning. Moscow, Vysshaya Shkola Publ. 415 (in Russian).
Review
For citations:
Khroustalev B.M., Liu Tingguo , Akeliev V.D., Li Zhongyu , Aliakseyeu H.Yu., Zankаvich V.V. Heat Resistance and Heat-and-Mass Transfer in Road Pavements. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2019;62(6):536-546. https://doi.org/10.21122/1029-7448-2019-62-6-536-546