Solar Cells: Current State and Development Prospects
https://doi.org/10.21122/1029-7448-2019-62-2-105-123
Abstract
The paper considers the main trends in the development of the world market of solar photovoltaics over the past few years. It is shown that the industry is a very rapidly evolving one among the branches of renewable energy and modern industries as a whole. It is obvious that the prime cost of the of solar energy being produced is rapidly approaching the price of electricity generated by traditional methods at nuclear power plants and thermal power plants. The aspects of the development of the efficiency of modern research solar cells made of various materials using innovative technological solutions based on the data provided by the National Laboratory for Renewable Energy (NREL, USA) in 2017 are noted. For the convenience of analysis, the research solar cells are divided into four technological groups. The advantages and disadvantages of solar cells, including the specific features of their production and prospects for development are considered separately for each group; the maximum efficiency for the year 2017 is estimated. A possible alternative to the future development of modern high-performance single-transition solar cells is the use of fundamentally new materials based on nanoheteroepitaxial structures with quantum dots. The possibilities of absorption (processing) by such structures of both short-wave radiation and long-wave part of the solar radiation spectrum for the purpose of generation of electric energy by increasing the efficiency of solar cells on their basis have been demonstrated. The optimal materials for their production and the principles of action of high-performance solar cells on their basis have been considered. The prospects of manufacturing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy with pulse cooling of the substrate have been substantiated.
About the Authors
I. I. MaronchukRussian Federation
Sevastopol
D. D. Sanikovich
Russian Federation
V. I. Mironchuk
Belarus
Address for correspondence: Mironchuk Viktor I. – Belarusian State Agrarian Technical University, 99 Nezavisimosty Ave., 220023, Minsk, Republic of Belarus. Tel.: +375 17 267-37-01 viktor.mhtc@gmail.com
References
1. Jeger-Waldau A. (2012) PV Status Report 2012. Luxembourg, Publications Office of the European Union. 45.
2. Jeger-Waldau A. (2014) PV Status Report 2014. Luxembourg, Publications Office of the European Union. 50.
3. Jeger-Waldau A. (2017) PV Status Report 2017. Luxembourg, Publications Office of the European Union. 90.
4. Maronchuk I. I., Maronchuk I. E., Sanikovich D. D., Gochua K. V. (2016) Purification of Metallurgical Silicon up to “Solar” Mark Silicon. International Journal of Renewable Energy Research, 6 (4), 1227–1231.
5. Maronchuk I. I., Maronchuk I. E., Sanikovich D. D., Shirokov I. B. (2016) The Development of a Purification Technique of Metallurgical Silicon to Silicon of the Solar Brand. Russian Microelectronics, 45 (8–9), 570–575. https://doi.org/10.1134/s1063739716080102.
6. Data Presented by the National Renewable Energy Laboratory (NREL, USA) on the Development of Solar Cells of Maximum Efficiency for 2017. Available at: https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png. (Accessed 20 February 2018) (in Russian).
7. Cotal H., Fetzer C., Boisvert J., Kinsey G., King R., Hebert P., Yoon H., Karam N. (2009) III–V Multijunction Solar Cells for Concentrating Photovoltaics. Energy Environ. Sci., 2 (2), 174–192. https://doi.org/10.1039/b809257e.
8. Alferov Zh. I., Andreev V. M., Rumyantsev V. D. (2004) Trends and Prospects for the Development of Solar Photovoltaics. Semiconductors, 38 (8), 899–908. https://doi.org/10.1134/1.1787110.
9. Fraas L. M., Partain L. D. (2010) Solar Cells and their Applications. 2nd edition. John Wiley & Sons, Inc., Publication. 648. https://doi.org/10.1002/9780470636886.
10. Barnham K. W. J., Bushnell D. B., Connolly J. P., Ekins-Daukes N., Kluftinger B. G., Mazzer M., Nelson J. (2000) High Efficiency III–V Solar Cells. Phys. Lett., (76), 143.
11. Smith M. A., Sinharoy S., Weizer V. G., Khan O., Pal A., Clark E. B., Wilt D. M., Scheiman D. A., Mardesich N. (2000) Solar Cell for NASA Rainbow Concentrator. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No 00CH37036), 1139. https://doi.org/10.1109/pvsc.2000.916088.
12. Fan J. C. C., Bozler C. O., McClelland R. W. (1981) Thin-Film GaAs Solar Cells. 15th IEEE Photovoltaic Specialists Conference (Kissimmee, Fla, 1981). Rec. New York, 375–377.
13. Gribov B. G., Zinov’ev K. V. (2008) New Technologies for Production of Polycrystalline Silicon for Solar Power Engineering. Semiconductors, 42 (3), 1475–1479. https://doi.org/10.1134/s1063782608130046.
14. Maronchuk I. I., Maronchuk I. E., Sanikovich D. D., Shirokov I. B. (2015) Development of Clearing Technique of Metallurgical Silicon to Solar Grade Silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics, 18 (3), 189–194 (in Russian). https://doi.org/10.17073/1609-3577-2015-3-189-194.
15. Terukov E. I., Shutkin O. I. (2016) Perspectives of Solar Energy in Russia. Herald of the Russian Academy of Sciences, 86 (2), 57–63. https://doi.org/10.1134/s1019331616020052.
16. Sark W. Van, Korte L., Roca F. (2012) Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Berlin, Springer. 574. https://doi.org/10.1007/978-3-64222275-7.
17. Melichko V. A., Shalin A. S., Mukhin I. S., Kovrov A. E., Krasilin A. A., Vinogradov A. V., Belov P. A., Simovskii C. R. (2016) Solar Photovoltaics: the Current State and Development Trends. Physics-Uspekhi, 59 (8), 727–772. https://doi.org/10.3367/ufne.2016.02.037703.
18. Reinhard P., Bissig B., Pianezzi F., Avancini E., Hagendorfer H., Keller D., Fuchs P., Döbeli M., Vigo C., Crivelli P., Nishiwaki S., Buecheler S., Tiwari A. N. (2015) Features of KF and NaF Postdeposition Treatments of Cu(In, Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells. Chemistry of Materials, 27 (16), 5755–5764. https://doi.org/10.1021/acs.chemmater.5b02335.
19. Bonnet D., Meyers P. (1998) Cadmium Telluride – Material for Thin Film Solar Cells. Journal of Materials Research, 13 (10), 2740–2753. https://doi.org/10.1557/jmr.1998.0376.
20. New Solar Technology – Roadmap LCOE Qatar. Available at: http://bxhorn.com/2014/lcoe/ (Accessed 20 February 2018) (in Russian).
21. Liu Y., Hong Z., Chen Q., Chang W., Zhou H., Song T. B., Young E., Yang Y. M., You J., Li G., Yang Y. (2015) Integrated Perovskite/Bulk-Heterojunction Toward Efficient Solar Cells. Nano Letters, 15 (1), 662–668. https://doi.org/10.1021/nl504168q.
22. Snaith H. J. (2013) Perovskites: the Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4 (21), 3623–3630. https://doi.org/10.1021/jz4020162.
23. Marti A., Cuadra L., Luque A. (2000) Quantum Dot Super Solar Cell. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No 00CH37036). 363. https://doi.org/10.1109/pvsc.2000.916039.
24. Cuadra L., Marti A., Lopez N., Luque A. (2003) Intermediate Band Photovoltaics Overview. 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May 11–18, 2003, PCD IPL-B2-01.
25. Maronchuk I. E., Maronchuk I. I., Kulyutkina T. F., Bykovsky S. Yu. (2012) Liquid-Phase Epitaxy and Properties of Nanoheterostructures Based on III–V Compounds. Nanosistemi, Nanomater?ali, Nanotekhnolog??: Sbornik Nauchnykh Trudov [Nanosystems, Nanomaterials, Nanotechnologies: Collected Scientific Works], 10 (1), 77–88 (in Ukrainian).
26. Nozik A. J. (2002) Quantum Dot Super Solar Cells. Physica E: Low-Dimensional Systems and Nanostructures, 14 (1–2), 115–120. https://doi.org/10.1016/s1386-9477(02)00374-0.
27. Nozik A. (2007) Believes Quantum-Dot Solar Power Could Boost Output in Cheap Photovoltaics. NY, Technology Review. 49.
28. Luque A., Marti A. (1997) Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Physical Review Letters, 78 (26), 5014–5017. https://doi.org/10.1103/physrevlett.78.5014.
29. Alguno A., Usami N., Ujihara T., Fujiwara K., Sazaki G., Nakajima K., Shiraki Y. (2003) Enhanced Quantum Efficiency of Solar Cells with Self-Assembled Ge Dots Stacked in Multilayer Structure. Applied Physics Letters, 83 (6), 1258–1260. https://doi.org/10.1063/1.1600838.
30. Voitsekhovskii A. V., Grigoriev D. V., Pchelyakov O. P., Nikiforov A. I. (2010) Efficiency of Conversion of Solar Energy by a Solar Cell Based on Si with Ge Quantum Dots. Prikladnaya Fizika = Applied Physics, 6 (2), 96–102 (in Russian).
31. Kulyutkina T. F., Maronchuk I. I., Velichko O. V. [et al.] (2011) Ultra-High-Efficiency Solar Cells. Nov? Tekhnolog?? = New Technologies, 3 (33), 9–16 (in Russian).
32. Alferov Zh. I. (1998) The History and Future of Semiconductor Heterostructures. Semiconductors, 32 (1), 1–14. https://doi.org/10.1134/1.1187350.
33. Maronchuk I. E., Kulyutkina ?. F., Maronchuk I. I. Method for Growing Epitaxial NanoHeterostructures with Arrays of Quantum Dots. Patent of Ukraine No 94699 (in Russian).
34. Dimova-Malinovska D., Lovchinov K., Maronchuk I .I., Maronchuk I. ?., Sanikovich D. D. (2014) Deposition by Liquid Epitaxy and Study of the Properties of Nano-Heteroepitaxial Structures with Quantum Dots for High Efficient Solar Cells. Journal of Physics: Conference Series, 558, 012049. https://doi.org/10.1088/1742-6596/558/1/012049.
35. Dimova-Malinovska D., Nichev H., Maronchuk I. I., Maronchuk I. ?., Sanikovich D. D. (2016) Study of the Morphology of Ge Quantum Dots Grown by Liquid Phase Epitaxy. Journal of Physics: Conference Series, 700, 012043. https://doi.org/10.1088/1742-6596/700/1/012043.
36. Dimova-Malinovska D., Nichev H., Maronchuk I. I., Sanikovitch D. D., Cherkashin A. S. (2017) Improvement of Growing of Ge QDs by the Method of Liquid Phase Epitaxy. Journal of Physics: Conference Series, 794, 012012. https://doi.org/10.1088/1742-6596/794/1/012012.
37. Moiseev K. D., Parkhomenko Ya. A., Ankudinov A. V., Gushchina E. V., Mikha?lova M. P., Titkov A. N., Yakovlev Yu. P. (2007) InSb/InAs Quantum Dots Grown by Liquid Phase Epitaxy. Technical Physics Letters, 33 (7), 295–298. https://doi.org/10.1134/s1063785007040074.
38. Sears K., Mokkapati S., Buda M., Tan H. H., Jagadish C. (2006) In(Ga)As/GaAs Quantum Dots for Optoelectronic Devices. Proc. SPIE 6415, Microand Nanotechnology: Materials, Processes, Packaging, and Systems III, 641506. https://doi.org/10.1117/12.706526.
39. Akchurin R. Kh., Boginskaya I. A., Marmalyuk A. A., Ladugin M. A., Surnina M. A. (2011) Development of Fundamentals of Droplet Epitaxy for the Formation of Quantum Dot Arrays in the InAs/GaAs System under MOVPE Conditions. Russian Microelectronics, 41 (8), 453–458. https://doi.org/10.1134/s1063739712080021.
40. Surnina M. A., Sizov A. L., Akchurin R. Kh., Bagayev T. A. (2015) Influence of the Indium Deposition Temperature on the Morphology of Nano-Sized InAs/GaAs Heterostructures Obtained by the Drip Method under the Conditions of MOS Hydride Epitaxy. Prikladnaya Fizika = Applied Physics, (2), 97–101 (in Russian).
41. Bykovsky S. Y., Bondarec S. V., Maronchuk I. I., Velchenko A. A. (2014) An Obtaining of Nanoheteroepitaxial Structures with Quantum Dots for High Effective Photovoltaic Devices, Investigation of their Properties. TEKA. Commission of Motorization and Energetics in Agriculture. Polish Academy of Sciences, 14 (1), 154–163.
Review
For citations:
Maronchuk I.I., Sanikovich D.D., Mironchuk V.I. Solar Cells: Current State and Development Prospects. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2019;62(2):105-123. (In Russ.) https://doi.org/10.21122/1029-7448-2019-62-2-105-123