Specific Features of Heatand Mass Transfer Processes in Road Dressings
https://doi.org/10.21122/1029-7448-2018-61-6-517-526
Abstract
The paper presents a fragment of on-going investigations directed on creation of optimum data environment that ensures an access to world scientific journals and other publications which are necessary for qualitative implementation of works on priority directions of R&D in the field of road-construction industry in the period of 2016–2020. A citation analysis has been applied while using data of Journal Citation Reports for selection of world scientific serial publiccations which are necessary for execution of investigations on heat and mass transfer in road dressings. The road dressings are considered as open heterogeneous thermodynamic systems. Their deformations occur under various climatic conditions due to heat and mass transfer processes and interaction of transport flows and road surface. Crack formation takes place in depth of the road dressings and on road surfaces as a result of temperature, mass transfer processes. As it is known material structure of constructive layers especially which are created with the help of technogenic wastes (asphalt-concrete, concrete, reinforced concrete scrap and products of its recycling, brick rubble, various wastes of production etc.) influence on heat and mass transfer. The paper presents results of investigations on heat flows, boundary layers according to air viscosity, velocity of geometric permeability characteristics, capillary pressures in road pavements.
About the Authors
B. M. KhroustalevBelarus
Address for correspondence: Khroustalev Boris M. – Belarusian National Technical University 150 Nezavisimosty Ave., 220013, Minsk, Republic of Belarus. Tel.: +375 17 265-96-56 tgv_fes@bntu.by
Tingguo Liu
China
V. D. Akeliev
Belarus
Yu. H. Aliakseyeu
Belarus
Jicun Shi
China
V. V. Zankovich
Belarus
References
1. Lalla J. R. F., Mwasha A. (2014) Investigating the Compressive Strengths of Guanapo Recycled Aggregate Concrete as Compared to that of its Waste Material. West Ind. J. of Engineering, 36 (2), 12–19.
2. Cheng-Chih Fan, Ran Huang, Howard Hwang, Sao-Jeng Chao (2015) The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar. Materials, 8 (5), 2658–2672. https://doi.org/10.3390/ma8052658.
3. Khroustalev B. M., Nesenchuk A. P., Timoshpolsky V. I., Akeliev V. D., Sednin V. A., Kopko V. M., Nerezko A. V. (2007) Heatand Mass Transfer. Part 1. Minsk, Belarusian National Technical University. 606 (in Russian).
4. Pshembaev M. K., Kovalev Ya. N., Akeliev V. D. (2015) Estimation of the Concrete Pavement Temperature Fields and their Gradients. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edenenii SNG = Energetika. Proceedings of the CIS Higher Educational Institutions and Power Engineering Associations, (4), 54–63 (in Russian).
5. Teltaev B. B. (2015) Regular Features in Self-Organization of Low-Temperature Cracking in Asphalt-Concrete Road Pavement. Doklady Natsional'noi Akademii Nauk Respubliki Kazakhstan = Reports of National Academy of Sciences of the Republic of Kazakhstan, (4), 40–65 (in Russian).
6. Amarasiri A., Grenfell J. (2015) Numerical Modelling of Thermal Cracking of Pavements. International Journal of Pavement Research and Technology, 8 (2), 85–93.
7. Soldatkin M. T., Akel'ev V. D., Astapova L .V. (1973) Device for Testing Construction Material on Air Permeability. Patent USSR No 393682 (in Russian).
8. Baranov S. P., Soldatkin M. T., Akel'ev V. D., Ufimtseva T. A. (1976) Device for Measuring Intra-Capillary Pressure in Porous Bodies. Patent USSR No 516921 (in Russian).
9. Smol'skii R. I., Akel'ev V. D., Batrachenko V. S. (1980) Unit for Testing Construction Materials on Water Permeability. Patent USSR No 763712 (in Russian).
10. Akel'ev V. D., Gurova G. E. (1981) Device for Determination of Air Permeability in Enclosing Structures. Patent USSR No 845098 (in Russian).
11. Soldatkin M. T., Stakhovskaya L. E., Akel'ev V. D. (1982) Device for Measuring Partial Pressure of Water Vapor. Patent USSR No 922554 (in Russian).
Review
For citations:
Khroustalev B.M., Liu T., Akeliev V.D., Aliakseyeu Yu.H., Shi J., Zankovich V.V. Specific Features of Heatand Mass Transfer Processes in Road Dressings. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2018;61(6):517-526. https://doi.org/10.21122/1029-7448-2018-61-6-517-526