Preview

Энергетика. Известия высших учебных заведений и энергетических объединений СНГ

Расширенный поиск

Определение насыщения трансформатора тока на основе использования искусственной нейронной сети

https://doi.org/10.21122/1029-7448-2023-66-3-233-245

Аннотация

При насыщении трансформатора тока, преимущественно вследствие наличия экспоненциально затухающей апериодической составляющей в токе повреждения, его вторичный ток имеет характерную непериодическую искаженную форму, существенно отличающуюся от его первичной (истинной) формы, что ведет к занижению вычисляемого релейной защитой значения вторичного тока по сравнению с его истинным значением. Указанное приводит к затягиванию   времени   срабатывания или вовсе к отказу  функционирования  устройств 

релейной защиты, так как уставки и алгоритмы релейной защиты рассчитаны и построены соответственно из предположения о том, что форма сигнала вторичного тока является синусоидальной и пропорциональной первичному. А поскольку в общем случае при использовании классических электромагнитных трансформаторов тока исключить возможность их насыщения невозможно, то выявление указанного режима функционирования является актуальной технической задачей. В статье предлагается использовать искусственную нейронную сеть, которая совместно с традиционным способом определения насыщения на основе сравнения значений соседних выборок вторичного тока позволяет реализовать быстрый и надежный детектор насыщения трансформатора тока. Детально рассмотрены этапы практической реализации такой искусственной нейронной сети. В среде имитационного моделирования MATLAB-Simulink методом вычислительного эксперимента выполнена проверка функционирования предложенного детектора, которая подтвердила, что он позволяет быстро и безошибочно определять насыщение в широком диапазоне изменения параметров энергосистемы и самого трансформатора тока. 

Об авторе

Ю. B. Румянцев
Белорусский национальный технический университет,
Беларусь

Адрес для переписки: 
Румянцев Юрий Владимирович  –
Белорусский национальный технический университет,
пр-т Независимости, 65/2,
220013, г. Минск, Республика Беларусь.
Тел.: +375 17 326-89-51 
y.rumiantsev@gmail.com



Список литературы

1. Rumiantsev Yu. V., Romaniuk F. A. (2021) An Artificial Neural Network Developed in MATLAB-Simulink for Reconstruction a Distorted Secondary Current Waveform. Part 1. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 64 (6), 479–491 (in Russian). https://doi.org/10.21122/1029-7448-2021-64-6-479-491

2. Rumiantsev Yu. V., Romaniuk F. A. (2022) An Artificial Neural Network Developed in MATLAB-Simulink for Reconstruction a Distorted Secondary Current Waveform. Part 2. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (1), 5–21 (in Russian). https://doi.org/10.21122/1029-7448-2022-65-1-5-21

3. Rebizant W., Hayder T., Schiel L. (2004) Prediction of CT Saturation Period for Differential Relay Adaptation Purposes. International Conference on Advanced Power System Automation and Protection, 1–6.

4. Rumiantsev Yu. V. (2016) A Comprehensive Model for the Power Transformer Digital Differential Protection Functioning Research. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 59 (3), 203–224 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-3-203-224

5. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2018). Digital Current Measurement Element for Operation during Current Transformer Severe Saturation. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 61 (6), 483–493 (in Russian). https://doi.org/10.21122/1029-7448-2018-61-6-483-493

6. Zocholl S. E., Mooney J. (2004) Primary High-Current Testing of Relays with Low Ratio Current Transformers. 57th Annual Conference for Protective Relay Engineers, College Station, TX, USA, 182–189. https://doi.org/10.1109/CPRE.2004.238491

7. Bhide S. R. (2014) Digital Power System Protection. PHI Learning Pvt. Ltd. 280.

8. Schneerson E. M. (2007) Digital Relay Protection. Moscow, Energoatomizdat Publ. 549 (in Russian).

9. Romaniuk F., Rumiantsev V., Novash I., Rumiantsev Y., Boiko O. (2016) Comparative Assessment of Digital Filters for Microprocessor-Based Relay Protection. Przegląd Electrotechniczny, 1 (7), 130–133. https://doi.org/10.15199/48.2016.07.28

10. Hamming R. (2012) Numerical Methods for Scientists and Engineers. 2nd Ed. New York, Dover Publications. 721.

11. Evans F. J., Wells G. (1970) Use of a Sampling Scheme to Detect Transient Saturation in Protective Current Transformers. IEEE Transactions on Instrumentation and Measurement, 19 (3), 144–147. https://doi.org/10.1109/TIM.1970.4313884

12. Yang L., Dolloff P. A., Phadke A. G. (1990) A Microprocessor Based Bus Relay Using a Current Transformer Saturation Detector. Proceedings of the Twenty-Second Annual North American Power Symposium. Auburn, AL, USA, 193–202. https://doi.org/10.1109/NAPS.1990.151372

13. Phadke A. G., Thorp J. S. (2009) Computer Relaying for Power Systems. 2nd Ed. Hertfordshire– Chichester, Research Studies Press Limited and John Wiley & Sons. 344. https://doi.org/10.1002/9780470749722

14. Kang Y. C., Ok S. H., Kang S. H. (2004) A CT Saturation Detection Algorithm. IEEE Transactions on Power Delivery, 19 (1), 78–85. https://doi.org/10.1109/TPWRD.2003.820200

15. Kang Y. C., Ok S. H., Kang S. H. (2001) A Novel CT Saturation Detecting Algorithm Unaffected by a Remanent Flux. 2001 Power Engineering Society Summer Meeting. Conference Proceedings, (Cat. No.01CH37262), 1324–1327. https://doi.org/10.1109/PESS.2001.970268

16. Schettino B. M., Duque C. A., Silveira P. M., Ribeiro P. F., Cerqueira A. S. (2014) A New Method of Current-Transformer Saturation Detection in the Presence of Noise. IEEE Transactions on Power Delivery, 29 (4), 1760–1767. https://doi.org/10.1109/TPWRD.2013.2294079

17. Schettino B. M., Duque C. A., Silveira P. M. (2016) Current-Transformer Saturation Detection Using Savitzky – Golay Filter. IEEE Transactions on Power Delivery, 31 (3), 1400–1401. https://doi.org/10.1109/tpwrd.2016.2521327

18. Chothani N. G., Bhalja B. R. (2014) New Algorithm for Current Transformer Saturation Detection and Compensation Based on Derivatives of Secondary Currents and Newton's Backward Difference Formulae. IET Generation, Transmission & Distribution, 8 (5), 841–850. https://doi.org/10.1049/iet-gtd.2013.0324

19. Dos Santos E. M., Cardoso G., Farias P. E., De Morais A. P. (2012) CT Saturation Detection Based on the Distance between Consecutive Points in the Plans Formed by the Secondary Current Samples and their Difference-Functions. IEEE Transactions on Power Delivery, 28 (1), 29–37. https://doi.org/10.1109/TPWRD.2012.2220382

20. Kumar K., Kumbhar G. B., Mahajan S. (2016) A New Efficient Algorithm to Detect Current Transformer Saturation. 2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, 1–5. https://doi.org/10.1109/PESGM.2016.7741583

21. Kasztenny B., Rosolowski E., Lukowicz M., Izykowski J. (1997) Current Related Relaying Algorithms Immune to Saturation of Current Transformers. Sixth International Conference on Developments in Power System Protection. Nottingham, Publication No. 434, 365–368. https://doi.org/10.1049/cp:19970100

22. Biswal S., Biswal M. (2019) Detection of Current Transformer Saturation Phenomenon for Secured Operation of Smart Power Network. Electric Power Systems Research, 175, 105926. https://doi.org/10.1016/j.epsr.2019.105926

23. Wiszniewski A., Rebizant W., Schiel L. (2008) Correction of Current Transformer Transient Performance. IEEE Transactions on Power Delivery, 23 (2), 624–632. https://doi.org/10.1109/tpwrd.2008.915832

24. Allain R., Jean P. (2003) Method for Detecting Saturation in a Current Transformer. Patent No US10/502,855.

25. Distributed Busbar Protection REB500. Application Manual. Available at: https://library.e.abb.com/public/e351d17bb0bf42938f2323a4395b5eea/1MRK505333-UEN_-_en_Application_Manual__REB500_8.10__IEC.pdf.

26. Saha M. (1992) Method and Device for Detecting Saturation in Current Transformers. Patent No EP0506035B1.

27. Easergy MiCOM P740 Differential Busbar Protection Relay, SW Version B1, Manual (Global File) P740/EN M/Qd9. Available at: https://www.se.com/ww/en/download/document/P74x_EN_M_Qd9__B1_LM/

28. Ziegler G. (2012) Numerical Differential Protection: Principles and Applications. 2nd Ed. Erlangen, John Wiley & Sons. 287.

29. Benmouyal G., Zocholl S. E., Guzman-Casillas A. (2004) Instantaneous Overcurrent Element for Heavily Saturated Current in a Power System. Patent No US6757146 B2.

30. Rebizant W., Wiszniewski A., Schiel L. (2008) CT Saturation Correction Based on the Estimated CT Saturation Time Constant. 2008 IET 9th International Conference on Developments in Power System Protection (DPSP 2008), 174–179. https://doi.org/10.1049/cp:20080031

31. Ribeiro P. F., Duque C. A., Ribeiro P. M., Cerqueira A. S. (2013) Power Systems Signal Processing for Smart Grids. Chichester, John Wiley & Sons. 448. https://doi.org/10.1002/9781118639283

32. Wu Q. H., Lu Z., Ji T. (2009) Protective Relaying of Power Systems Using Mathematical Morphology. London - New York, Springer Science & Business Media. 207. https://doi.org/10.1007/978-1-84882-499-7

33. Rebizant W., Szafran J., Wiszniewski A. (2011) Digital Signal Processing in Power System Protection and Control. London, Springer Publ. 316. https://doi.org/10.1007/978-0-85729-802-7

34. Ali M., Son D. H., Kang S. H., Nam S. R. (2017) An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy. Energies, 10 (11), 1830. https://doi.org/10.3390/en10111830

35. Dabney J. B., Harman T. L. (2004). Mastering Simulink. Upper Saddle River: Pearson/Prentice Hall. 376.

36. Neural Network Toolbox. User’s Guide. Version 4. The MathWorks, 2002. Available at: http://cda.psych.uiuc.edu/matlab_pdf/nnet.pdf

37. SimPowerSystems. User’s Guide. Version 5. The MathWorks, 2011. Available at: https://guidessimo.com/document/558673/matlab-simpowersystems-5-operation-user-s-manual-403.html

38. Novash I. V., Rumiantsev Yu. V. (2015) A Simplified Model of Three-Phase Bank of Current Transformers in the Dynamic Simulation System. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, (5), 23–38 (in Russian).

39. Hagan M. Т., Demuth H. B., Beale M. H., De Jesus O. (2014) Neural Network Design. 2nd ed. Boston, PWS Publishing. 1012.

40. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2016) Digital Filters Implementation in Microprocessor-Based Relay Protection. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 59 (5), 397–417 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-5-397-417

41. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2017) Current Measurement Element for Operation during Current Transformer Magnetic Core Severe Saturation. Patent BY No 20808 C1 (in Russian).

42. Novash I. V., Romaniuk F. A., Rumiantsev V. Yu., Rumiantsev Yu. V. (2021) Microprocessor-Based Overcurrent Relay Protection Devices: Theory, Modeling, Practices. Minsk, Belarusian National Technical University. 168 (in Russian).


Рецензия

Для цитирования:


Румянцев Ю.B. Определение насыщения трансформатора тока на основе использования искусственной нейронной сети. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2023;66(3):233-245. https://doi.org/10.21122/1029-7448-2023-66-3-233-245

For citation:


Rumiantsev Yu.V. Current Transformer Saturation Detection Method Based on Artificial Neural Network. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2023;66(3):233-245. https://doi.org/10.21122/1029-7448-2023-66-3-233-245

Просмотров: 549


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-7448 (Print)
ISSN 2414-0341 (Online)