	, .		• •,	
	• • • •		• •	
				-
	-			-
			,	-
	[13].		,	-
			,	-
	,			
		•		
:	_			
•	_			
7			,	
			,	-
			,	-
			-	
			•	
				-
			,	-
	,			
	,	,		
				-
,				
				-
	•		(),	
			(),	_
_	()		,	_
	()			
,	. 1. <i>Has. Has.</i> —		•	
	$1, u_{as}, u_{bs}, u_{cs} - i_{as}, i_{bs}, i_{cs} - i_{as}$; $u_1, u_2 -$	_
	7 -437 -037 -03		; , , , , , , , , , , , , , , , , , , ,	_
			, , , , , , , ,	
		[4]	,	-
			,	
[5]				
			,	-

22

$$\begin{bmatrix} U_{s} = \underline{I}_{s}R_{s} + \frac{d\underline{\psi}_{s}}{dt}; \\ 0 = \underline{I}_{r}R_{r} + \frac{d\underline{\psi}_{s}}{dt}; \\ u_{0} = i_{0}R_{0} + I_{0}\frac{di_{0}}{dt}; \\ M = \frac{3}{2}\operatorname{Im}\left[\underline{I}_{s}\underline{\psi}_{s}\right] \end{bmatrix}$$

$$\underbrace{U_{s}, I_{s}, I_{r}, \underline{\psi}_{s}, \underline{\psi}_{r}}_{r} - \vdots$$

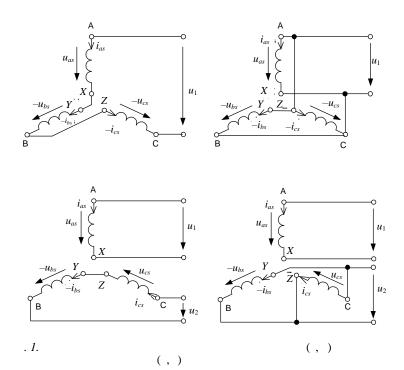
$$\vdots I_{0}, R_{0} - \vdots$$

$$\vdots I_{0}, R_{0} - \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots$$


$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot I_{0} \cdot \vdots$$

$$\vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot \vdots I_{0} \cdot I_{$$

 u_0 , :

$$u_{1} = \underline{I}_{s} \left(2R_{s} + \frac{1}{4}R_{0} \right) + \frac{1}{4}L_{0}\frac{d\underline{I}_{s}}{dt} + 2\frac{d\left(\underline{\psi}_{s} + \underline{\psi}_{s}\right)}{dt};$$

$$0 = \underline{I}_{r}R_{r} + \frac{d\psi_{r}}{dt};$$

$$M = \frac{3}{2} \operatorname{Im} \left[\underline{I}_{s}\underline{\psi}_{s} \right].$$
(3)

$$\underline{\Psi}_{s} = \underline{I}_{s}L_{s} + \underline{I}_{r}Me^{j\xi};$$

$$\underline{\Psi}_{r} = \underline{I}_{r}L_{r} + \underline{I}_{s}Me^{-j\xi},$$

$$L_s = M + L_{s\zeta}\;;\;\; L_r = M + L_{r\zeta} \;\; -$$

$$; \quad ,\; L_{s\zeta}\;,\;\; L_{r\zeta} \;\; -$$

.

$$e^{j\xi}$$
, ξ (3)

:

$$\begin{cases}
\left(2R_{s} + \frac{1}{4}R_{0}\right)i_{\alpha s} + \left(2L_{s} + \frac{1}{4}L_{0}\right)\frac{di_{\alpha s}}{dt} + 2M\frac{di_{\alpha r}}{dt} = u_{1}; \\
R_{r}i_{\alpha r} + L_{r}\frac{di_{\alpha r}}{dt} + M\frac{di_{\alpha s}}{dt} + \omega L_{r}i_{\beta r} = 0; \\
R_{r}i_{\beta r} + L_{r}\frac{di_{\beta r}}{dt} - \omega L_{r}i_{\alpha r} - \omega Mi_{\alpha s} = 0; \\
M = -\frac{3}{2}Mi_{\alpha s}i_{\beta r},
\end{cases} \tag{4}$$

 $-2L_s + \frac{1}{4}L_0 \approx 2M + 2{,}25L_{s\zeta},$ $+\frac{1}{4}R_0\approx 2,25R_s\,,$ [6] $R_0 \approx R_s$; $L_0 \approx L_{s\zeta}$.

$$\begin{cases} i_{cs} = -i_{bs}; \\ u_{\alpha s} = u_1; \\ u_{cs} - u_{bs} = u_2. \end{cases}$$

$$\begin{cases}
(R_s + 0.5R_0)i_{\alpha s} + (L_s + 0.5L_0)\frac{di_{\alpha s}}{dt} + M\frac{di_{\alpha r}}{dt} = u_i; \\
\sqrt{3}R_si_{\beta r} + \sqrt{3}L_s\frac{di_{\beta r}}{dt} + \sqrt{3}M\frac{di_{\beta s}}{dt} = u_2; \\
R_ri_{\alpha r} + L_r\frac{di_{\alpha r}}{dt} + M\frac{di_{\alpha s}}{dt} + \omega L_ri_{\beta r} + \omega Mi_{\beta s} = 0; \\
R_ri_{\beta r} + L_r\frac{di_{\beta r}}{dt} + M\frac{di_{\beta s}}{dt} - \omega L_ri_{\alpha r} - \omega Mi_{\alpha s} = 0; \\
M = \frac{3}{2}M(i_{\beta s}i_{\alpha r} - i_{\alpha s}i_{\beta r})
\end{cases} (5)$$

$$R_s + 0.5R_0 \approx 1.5R_s$$
,

 $L_{s} + 0.5L_{0} \approx M + 1.5L_{s\zeta}$,

$$R_s$$
, L_s - $\sqrt{3}$. (. 1), - $\frac{7}{2}$

1. (4), (5) (. 1), $(R_{\alpha r}, R_{\beta r},$ $L_{\alpha r}$, $L_{\beta r}$, $M_{\alpha r}$, $M_{\beta r}$) . 1.

	. 1	. 1	. 1	. 1
$R_{\alpha s}$	$2R_s + \frac{1}{4}R_0$	$\frac{2}{3}R_s + \frac{1}{12}R_0$	$R_s + \frac{1}{2}R_0$	$R_s + \frac{1}{2}R_0$
$R_{eta s}$	0	0	$\sqrt{3}R_s$	$\frac{\sqrt{3}}{2}R_s$
$L_{\alpha s}$	$2L_s + \frac{1}{4}L_0$	$\frac{2}{3}L_s + \frac{1}{12}L_0$	$L_s + \frac{1}{2}L_0$	$L_s + \frac{1}{2}L_0$
$L_{eta s}$	0	0	$\sqrt{3}L_s$	$\frac{\sqrt{3}}{2}L_s$
$M_{\alpha s}$	2	$\frac{2}{3}M$		
$M_{\beta s}$	0	0	$\sqrt{3}M$	$\frac{\sqrt{3}}{2}M$

2. [1, 3, 6]

2.

20.10.2004