621.315

( ) 30 23-02 23-11 23 « 73 « [1]. U = 110 , , 45–50 ). 1999 . 3032-95, [2]. [1], ( )(. )[3]. ( ) BUSEF [4]  $y_{\text{max}}$ 

13

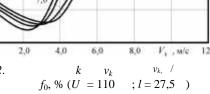
) [5]. (  $y_{\text{max}} = \sqrt{(h+h_k)(2f_0 - h - h_k)},$ (1)  $f_0$  $(h+h_k) \ge f_0$   $y_{\text{max}} = f_0$ .  $h h_k$ [5]:  $h = 0.092 \left(\frac{S^{(2)}}{\rho l}\right)^2;$ (2)  $h_k = f_0 (1 - \cos \alpha_k),$  $S^{(2)}$  –  $S^{(2)} = 0.2I^2 \frac{l}{a} (t_k + T_a);$ (3)  $\alpha_k = 0.75 \frac{S^{(2)} t_k}{\rho l f_0} -$ ; p -, ;  $T_a$  – [5].  $y_{\text{max}}$ 

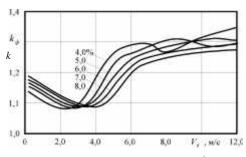
 $\frac{y_{\text{max}}}{f_0}$  $\frac{y_{\text{max}}}{f_0} = f(v_k)$  $h_k$  ( . 1).

14  $f_0$ ,

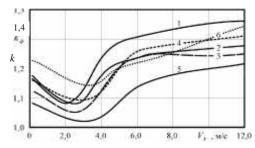
(2)

 $S_1^{(2)} = S_2^{(2)},$  $y_{\max 1} = y_{\max 2} .$ *I*<sub>2</sub> - $I_1 \quad t_{k1}$  $y_{\text{max}}$ :  $t_{k2} = \left(\frac{I_1}{I_2}\right)^2 (t_{k1} + T_a) - T_a$ . (4)  $t_{k2}$ (1),  $t_{k2} = \frac{1}{I_2^2} \sqrt{\left[I_1^2 \left(t_{k1} + T_a\right)\right]^2 - 271.7 f_0 \left(\frac{a\rho}{k_l}\right)^2 \left(\cos\alpha_{k1} - \cos\alpha_{k2}\right)}.$ (5) (1)  $h_k$ ,  $v_k = 2$  /  $y_{\text{max}}$ ,,  $\Delta y_{\text{max}}$ , % . 1, 0,5 1,0 0,97 0,96 . 1)  $y_{\text{max}}$ , 0,1 1,0 0,78 0,78 0,0 (1). 0,66 0,66 0,0 1,00 0,96 4,0 0,2 1,0 0,81 0,78 3,7 2,9 0,68 0,66 0,5 1,00 0,96 4,0 0,5 1,0 0,93 0,78 16,0 . 1. 0,77 0,66 14,3 (1)  $y_{\text{max}}$ , BUSEF, (1) [4].  $f_0, \%,$ 30 % k , (1)


 $\kappa = \frac{1}{y_{\text{max}}}$ 


 $y_{\text{max}}$ 

15


(6)

## BUSEF





. 3. 
$$k v_k v_{k,} / f_0, \% (U = 220 ; l = 30,8)$$



## **(1)**

|                           |             | ( )                |          |                   |         |                             |  |  |
|---------------------------|-------------|--------------------|----------|-------------------|---------|-----------------------------|--|--|
| <i>f</i> <sub>0</sub> , % | $I^{(2)}$ , | $y_{\text{max}}$ , | k        | $y_{\text{max}}k$ | max ,   | $\Delta y_{\text{max}}$ , % |  |  |
| U = 110                   |             | ,                  | , 27,5 , |                   |         | -500/27                     |  |  |
| 5                         | 10          | 0,52               | 1,09     | 0,57              | 0,57    | <1                          |  |  |
|                           | 20          | 1,35               | 1,18     | 1,59              | 1,60    | <1                          |  |  |
|                           | 30          | 1,38               | 1,28     | 1,77              | 1,76    | <1                          |  |  |
| U                         | = 220       | , 30,8 ,           |          |                   | -500/27 |                             |  |  |
| 6                         | 10          | 0,28               | 1,16     | 0,32              | 0,33    | 3,1                         |  |  |
|                           | 20          | 1,08               | 1,11     | 1,20              | 1,20    | <1                          |  |  |
|                           | 30          | 1,85               | 1,14     | 2,11              | 2,10    | <1                          |  |  |
|                           |             |                    |          |                   |         |                             |  |  |

$$k = f\left(\frac{S^{(2)}}{\rho l}\right)$$

$$\begin{array}{ccc} \cdot & & \\ \cdot & 2 & 3 & \\ & k & = f(v_k) & - \end{array}$$

$$\begin{array}{cccc}
 & & & & 110 \\
220 & . & & . & 4 & - \\
 & k & = f(v_k) & & & 
\end{array}$$

*k* , ,  $k y_{\text{max}}$ 

$$\neq$$
 $\neq y_{\text{max}}$ .

$$y_{
m max}$$
  $y_{
m 2\,max}$  -

$$y_{2\max} \approx y_{\max}$$
):

$$A_{-} - 2(y_{2 \max} + r_{p}) \ge A_{- \min}$$
, (7)

$$A_{-}$$
 ,  $A_{-\min}$  –

BUSEF

$$k_{y} = \frac{y_{2 \max}}{y_{1 \max}} = f\left(\frac{S^{(2)}}{\rho l}\right)$$

$$110 \quad 220 \quad (.5...7). \qquad , \qquad y_{2 \max} = k \ k_{y} y_{\max} ,$$
(6)

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{p}) \ge A_{-\min} . \qquad (8)$$

$$A_{-} - 2(k \ k_{y} y_{\max} + r_{$$

(9)

 $y_{\text{max}} = y$  [6]. [6]

y

 $S = 3.3 \rho l \sqrt{f_0 \cos \alpha_k} - \sqrt{f_0^2 - \left(\frac{y}{k \ k}\right)^2} .$ (10)

= 110 , l = 14,5 ; 2 - 11020 ; 3 –110 , 27,5 ; 4 –220 , 30,8 ; 5 – 220 , 40,5 ; 6 – 330 , 48 4,0 6,0 8,0  $v_k$ , / 12.0

> (3)  $S^{(2)} = S$ I .

(8)

y , S I 110–330 ( .3). - I , -  $Y_{2 \text{ max}}$  , BUSEF, Y .

, S I

| l,                    | ,   | $f_0$ , | у ,  | S , · | Ι,   | Ι,   |  |  |  |  |
|-----------------------|-----|---------|------|-------|------|------|--|--|--|--|
| U = 110 , $-500/27$   |     |         |      |       |      |      |  |  |  |  |
| 20                    | 2,5 | 1       | 1,01 | 181   | 19,5 | 25,3 |  |  |  |  |
| 27,5                  | 2,5 | 1,38    | 1,01 | 232   | 18,8 | 22,0 |  |  |  |  |
| U = 220 , $-500/27$   |     |         |      |       |      |      |  |  |  |  |
| 30,8                  | 4   | 1,85    | 1,51 | 328   | 26,6 | 25,3 |  |  |  |  |
| 40,5                  | 4   | 2,43    | 1,51 | 278   | 21,4 | 22,1 |  |  |  |  |
| U = 330 , $2 -500/27$ |     |         |      |       |      |      |  |  |  |  |
| 48                    | 4,5 | 2       | 1,29 | 640   | 31,6 | 37,0 |  |  |  |  |

1. The mechanical effects of short-circuit currents o en-air substations (rigid or flexible bus-bars). Brochure from CIGRE. SC 23.- aris, 1996.

11.12.2004