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Differential approximation is derived from radiation transfer equation by averaging over
the solid angle. It is one of the more effective methods for engineering calculations of radia-
tive heat transfer in complex three-dimensional thermal power systems with selective and
scattering media. The new method for improvement of accuracy of the differential approxi-
mation based on using of auto-adaptable boundary conditions is introduced in the paper.
The efficiency of the named method is proved for the test 2D-systems. Self-consistent
auto-adaptable boundary conditions taking into consideration the nonorthogonal component
of the incident to the boundary radiation flux are formulated. It is demonstrated that taking in-
to consideration of the non- orthogonal incident flux in multi-dimensional systems, such as
furnaces, boilers, combustion chambers improves the accuracy of the radiant flux simulations
and to more extend in the zones adjacent to the edges of the chamber.

Test simulations utilizing the differential approximation method with traditional boundary
conditions, new self-consistent boundary conditions and “precise” discrete ordinates method
were performed. The mean square errors of the resulting radiative fluxes calculated along the
boundary of rectangular and triangular test areas were decreased 1.5-2 times by using auto-
adaptable boundary conditions. Radiation flux gaps in the corner points of non-symmetric sys-
tems are revealed by using auto-adaptable boundary conditions which can not be obtained by
using the conventional boundary conditions.

Keywords: radiative heat transfer, numerical simulation, differential approximation,
boundary conditions.
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YAYYHMIEHUE TOYHOCTHU JUPPEPEHIIUAJIBHOI'O
IMPUBJIN)KEHUSA PACUETA TEIIVIOOBMEHA U3JTYYEHUEM
B MHOI'OMEPHbBIX CUCTEMAX IIPH UCITOJIb30BAHHUU
CAMOCOI'JIACOBAHHBIX TPAHUYHBIX YCJIOBUM

Joxrt. ¢pus.-mat. Hayk JJOBPET'O K. B.

benopycckutl Hayuonanbuslli mexHuyecKuli yHusepcumem

Juddepenunansroe npuOIMKeHHE, MOJIy4aeMoe IyTeM YCPEIHEHUs MO TEIECHOMY YUy
YpaBHEHUS NEpeHOCa U3ITydeHHUs, SBISETCS OAHUM M3 Hanboiee >(P(EeKTHBHBIX METOJOB HH-
JKEHEPHOTO PacyeTa JIy4UCTOro TEINIOOOMEHA B CJIOKHBIX MHOTOMEpHBIX TEILIOdHEpreTHYe-
CKHX CHCTEMax C CEJIEKTUBHOW M pacceuBarolleil cpenoil. Ilpeacrasnen noaxon s yiay4iue-
HHS TOYHOCTH pacyeTa JIyduCTOro TeIIo00MeHa MeTooM I hepeHIHaIbHOrO NPHOIIMKe-
HUSl B MHOTOMEpPHBIX CHUCTEMAax 3a CUET HUCIIOJIb30BAHUS CaMOCOINIACOBAHHBIX I'DAHUYHBIX
ycnosuii. IIpogemoncTpupoBaHa 3((eKTHBHOCTh NPEATIOKCHHOTO IOAXO0Aa Ha IpHMepe
MOJIENBHBIX JABYMEPHBIX CHCTEM. 3alMCaHbl CAMOCOITIACOBAHHBIE TPAHUYHBIE YCIOBHS, YUH-
THIBAIOIIME HEOPTOTOHAIBHOCTD ITNAIONIET0 MOTOKA H3IyYSHHs K MOBEPXHOCTU T'PAHUIIEI
U aITOPUTM HX HCIOJNB30BaHMs. [I0Ka3aHo, 4TO y4eT HEOPTOTOHATHHOCTH NAIAIONIETO TOTOKA
TMOBBIIIAET KAUECTBO pacueTa pagMallMOHHOTO TEMI00OMEHA B MHOTOMEPHBIX CHCTEMAX, 0CO-
OEHHO BOJIM3H YIIIOBBIX 30H.
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PacyeTsl, MpOBEIEHHBIE C MCHONb30BaHUEM TPAJULUOHHBIX U CAMOCOTIACOBAHHBIX I'pa-
HHUYHBIX YCJIOBHI, CPABHUBAIOTCS C «TOUHBIM» PAacUETOM, BBIIIOJIHEHHBIM METOAOM JIHCKPET-
HbIX opauHar. [Toka3aHo, YTO UCHOJIL30BAHUE HOBOI'O IOAXOJA MO3BOJSET YMEHBIIUTH CPEl-
HEKBaJIpaTUYHYIO IOTPEIIHOCTh PacueTa pe3yJbTHUPYIOUIEr0 MOTOKA U3Iy4eHHs Ha CTCHKY
B 1,5-2 paza. Mcrnonp30BaHue caMOCOTIaCOBAHHBIX TPAHHYHBIX YCIOBHI 1a€T BO3MOXKHOCTH BbI-
SIBUTh CKa4OK PE3yIbTHPYIOLIErO MOTOKA B YITIOBBIX TOYKAX MHOTOMEPHOM CHUCTEMBI, KOTOPBIH
HEBO3MOKHO IIOJIy4UTb [IPU PacyeTax ¢ UCNOIb30BaHUEM TPAJAULIUMOHHBIX TPAHUYHBIX YCIOBUIL.

KiroueBble ci10Ba: JTyducThIi TEUI000MEH, YHMCICHHOE MOAENUpoBaHue, auddepeHun-
aJIbHOE NPUOJIMIKEHUE, TPAHUYHbIE YCIIOBHS.

Wn. 4. Tabn. 1. bubmmorp.: 11 Ha3zs.

Introduction. There are many combustion, power engineering, atmospheric
heat transfer and other problems which demand prompt calculation of radiation
fluxes with relatively low accuracy. The differential approximation (DA) is the
fast and effective method for radiation transfer calculation if desired accuracy of
radiation fluxes evaluation is of the order of 15-20 % and there is no highly ani-
sotropic radiation fluxes in the system [1]. It takes usually 10-100 times less
computational time than “precise” methods of radiation transfer equation inte-
gration for non-uniform medias. The economy of CPU time becomes increasing-
ly significant when two and three- dimensional systems with selective media are
considered.

At higher optical densities t > 10 the “precise” methods meet with difficul-
ties connected with increase of the computations for each direction and increase
of the iterations to reach the given accuracy. The resulting flux, calculated by
discrete ordinate method, may get significant errors when the difference between
values of the incident to the boundary and irradiated by the boundary fluxes
is small. The DA-method is free of this privation because it calculates the resul-
ting flux directly.

Another advantage of the DA-method - is that it can be easily incorporated
into the computational routines of heat and mass transfer and gas dynamics
problems. Standard computer codes able to resolve second order steady state
differential equations may be utilized.

Differential approximation is a basic approach for reducing integro-diffe-
rential equation for radiative flux to differential form. It is used since the
40™ [2-4]. A common misjudge about the DA, is that it is invalid for optically
thin systems [5]. Actually, the only assumption grounding the DA is sufficient
uniformity of the radiation field, or more specifically, of the angular distribution
of radiation intensity I(r, I). The adequate boundary conditions for the DA equa-
tion (4) guarantee good accuracy of the DA method for the arbitrary optical den-
sities and non-homogeneous media [6, 7]. The boundary conditions are formed
with radiation energy conservation equations, formulated with specific assump-
tion about the emissivity and reflectivity of boundaries and radiation energy field
near the walls (for example, diffusive gray walls and isotropic semispherical
irradiation of to the walls may be considered).

Taking in mind importance of the boundary conditions for DA, Olfe [7] pro-
posed modified differential approximation method (MDA). The main idea
of the MDA is consideration of radiation from the boarders together with the
absorbing media and the media self radiation separately. As reported [5, 7],
MDA provides high accuracy, close to the accuracy of the higher order spherical
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harmonics approximations (P3;, Ps) and “precise” discrete ordinate method.
At the same time the integro-differential radiation transfer equation for enclosure
appears in MDA, which complicates utilization of this method. Another ap-
proach improving the quality of the DA is, so-called, quazi differential appro-
ximation (QDA) [8]. According to this method the local adjustment coefficients
for the DA are calculated on the basis of exact solution of radiation transfer
equation. This makes DA more accurate for the fixed thermodynamic situation.
After the thermodynamic situation is changed in a system a new adjustment
is necessary. A higher order Spherical harmonics methods (Ps, Ps) are most
often used to increase accuracy of radiation heat transfer calculation [8, 9]. This is
particularly effective for calculation of radiation fields within the relatively thick
optical media. The accuracy of the P, methods in vicinity of the boundaries is simi-
lar to the standard DA and depend on adequacy of the boundary conditions.

The Marshak’s [1, 5] boundary conditions or other BC based on the physical
assumptions regarding the angular distribution of the intensity near the boundary
are usually applied to solve governing equation. Practically, the boundary points
are not symmetric in the multi-dimensional systems and application of the con-
ventional boundary conditions may lead to a loss of accuracy. For example,
the calculations of the resulting radiative flux along the boarders of rectangular
and triangular volumes, Fig. 1, demonstrate that DA routine do not reveal
the radiation flux gaps in the corner points, see Fig. 2. Inaccuracy of the BC is
one of the main sources of errors for the DA-method modifications mentioned
above [10].
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Fig. 1. The geometry of the two-dimensional test areas

0.50‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\

0 2.00 4.00 6.00
A B Cc D A

Fig. 2. The relative resulting flux along the boarder of the rectangular, calculated by DA
with standard BC — dashed line; discrete ordinates “precise” method — solid line;
effective optical depth t = 1; temperature of the media T = 1500 K; walls temperature T, = 1300 K

To improve the boundary conditions it is necessary to know the angular dis-
tribution of radiation intensity in each point of the boundary. Here we propose
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to utilize conventional solution of the DA equation for adjusting the boundary
conditions and, consequently, obtaining the higher accuracy of DA solution
at the next step. It means that information about the geometry, local radiation
properties of the media and temperature fields is used to improve the boundary
conditions. The new auto-adaptable (AA) boundary conditions are formulated by
using this idea. Though our formulation of the auto-adaptable boundary condi-
tions is not the only possible, the numerical simulation and tests demonstrate that
this approach improves the solution for radiation fluxes qualitatively and quanti-
tatively. All the analysis is presented for the non-scattering media and mono-
chromatic radiation, although it can be easily extended for more practical situa-
tions.

Theory of the method. The equation of the radiation transfer in selective
scattering and absorbing media may be written in the form

di (r,1) _

2n b
(1, + ), (1) +16,B, (T, 1)+ 22 [ do! [ p(t, 1)1, (. )sin0'd0, (1)
dr 4r g 5

where | (r,1) — radiation intensity at spectral frequency o, in the point defined
by radius vector r in the direction defined by vector I; « - absorption coeffi-
cient; B, (T, r) — black body spectral radiation intensity at temperature T and
radiation frequency o; o, — scattering coefficient; p(l, ") - scattering indicatrix.

The differential approximation equations may be derived by averaging (1)
over the solid angle [1-3]. For non-scattering media one can obtain the sys-
tem of equations for spectral radiation energy density U _(r) and radiation

flux S, (r):

VS, =4nk, B, (T,r)-cx U, ; )
5 =—"vu,, ?)
ak,,

where a — parameter characterizing anisotropy of the radiation intensity 1 _(r, I)
angular distribution

IVIw(r,I)dQ

_ _n , 4
alr) I(IVIw(r,I))IdQ )

4n

The spectral radiation energy density and radiation flux are defined as fol-
lows:
U,(N=1[1,0rNde; S, (= [1,(r)lde

4n 4n

The first equation of the system (2), (3) is the exact radiation energy continuity
equation. The second equation is approximate as far as coordinate dependent ani-
sotropy parameter a is fixed (a = 3 corresponds to the P, spherical harmonics ap-
proximation and a = 4 — to the two-flux Schwartzchild-Schuster approximation).
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Combining equations (2) and (3) and taking, for instance, a = 4, we obtain
a second order differential equation for U (r,t)

v(lvuwj—41<uw+16nx/c B, (T,r)=0. (5)
K

Assuming the incident radiation is hemispherically isotropic and the flux
vector is orthogonal to the boundary, one can obtain the following correlation for
incident radiation [2]

(6)

Here subscript & indicate the value at (in the vicinity of) the boundary,
column parentheses define the module of vector.

The radiation intensity near the boundary may be considered as a superposi-
tion of incident radiation with intensity I;,, emission of the wall B (T,r), and
scattered- reflected part of incident radiation with intensity (1 — €)l;,. Simple
possible schematics of the radiation field, which may be titled as “isotropic” (a)
and “exocentric” (b) are presented on the Fig. 3.

eB(T, 1)

/(1—8)Iin
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Fig. 3. Schematics of radiation field near the boundary

Let us write down the boundary conditions for the simpler “isotropic” model
of non orthogonal to the boundary radiative flux. The total radiant energy densi-
ty for the grey boundary may be written as follows

%u =n(2-¢)l,, +neB(T, T), (7
3

where and below we omit index o near radiation intensity symbols for better
readability of formulas.
The components of the resulting flux near the boundary may be written as:
S, =mnl_(e+cos0—1)—neB(T, r); )

S, =ml;,sin®.
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Combining (3), (7) and (8) one can obtain the following BC for the equation (5):

_LQZ[EU —eB(T, r)}w—naB(T, r); 9)
ak ox |2 2—
_Lﬂ:[gu —TCSB(T, r)}w
ak oy |2 2-¢

The value of the incident flow vector angle 0, as well as cos6 and sinf can be
estimated by using the system (8) if the radiation energy density U|; is known

in the vicinity of the boundary. Excluding I;, from (8) one can obtain:
S,c0s60 -8, (1-¢) =[S, +neB(T, r)]sin6;
S, cos0-S, (1—¢) =[S, +neB(T, r)]V1-cos’ 0.
Square equation for cosd will have the form
[S2+(S, +meB(T, r)]cos’ 0—252pcos0+S2p” — (S, +meB(T, )’ =0. (10)

Solution of (10)

Q2 o4 2 12 o2 2
c0s0 = SyP + 5P +UX_Syp (1)
S S24U02 \[[SZ+UZP  sZ+U%’
y X y X y X
where p=1—¢ — reflectivity; UX :§X +7meB(T, r); §X =_i6_U_ S :—ia—u

ak ox ' akdy

The formulas (9) define the self — consistent auto-adaptable boundary condi-
tion. Equation (5) together with boundary conditions (9), (11) can be solved by
iterations starting from “zero-approach” at 6 = 0.

Numerical simulation. To test differential approximation method with the
Auto-Adaptable BC, we calculated the resulting flux near the boundaries by
using equation (5) with boundary conditions (9), (11). This solution was com-
pared to the results obtained by means of deferential approximation with stan-
dard boundary conditions and “precise” discrete ordinate solution [11]. The com-
putations were performed for wide range of optical depths and temperature dis-
tribution. Serious attention was paid to the benchmark method verification as far
as discrete ordinate method may give serious errors at situations of high optical
density, “ray” effect and some others. For example, the resulting flux, which is
the difference between incident to the boundary flux and irradiated by the
boundary flux, may get dramatic errors when the values of incident and boun-
dary irradiating fluxes are close. The DA-method is dealing with the resulting
flux directly and is free of this disadvantage.

All the calculations were realized by the finite elements method. One itera-
tion was sufficient for auto adjusting of boundary condition (9), (11) in our case.
The second and following iterations did not contribute to the accuracy
of the solution within 1 %. Consequently, the averaged computation time for
DA with auto-adaptable BC is 2 times more than with fixed BC and about
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50-100 times less than “precise” solution implemented by discrete ordina-
tes method [11]. The resulting flux near the boundary of equilateral triangular
and rectangular test areas as related to its maximum value is presented on Fig. 4.
The temperature of the irradiating media is 1500 K, the walls have the tempera-
ture 1300 K. The effective optical depth t, which is presented in the notes to the
Figures and Table, was calculated by the square of the two-dimensional test
area S, as follows t=x+/S. At the optical depth t ~ 1.0 the accuracy of the DA
is the worst. At higher t > 5.0 and lower t < 0.2 optical depth the accuracy be-
comes better and approaches the accuracy of the discrete ordinate solution.

For calculation of the resulting flux normal component 6U/dx and tangential
component oU/dy (which is necessary for obtaining cos6, Eq. (11)), the finite
element triangles adjacent to the corner points were taken symmetric and con-

gruent, otherwise the computational inaccuracy may corrupt the positive effect
of using of the AA BC.
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Fig. 4. The relative resulting flux along two boarders of the rectangular and triangular areas,
calculated by the standard DA-method — dashed, by DA with auto-adaptable BC — pointed
and discrete ordinates “precise” method — solid line; effective optical deptht=1

It is follows from the calculations, Fig. 4, that new approach gives more
accurate solution. Though the maximum absolute discrepancy is not reduced
essentially, the averaged over the perimeter square root discrepancy of the
DA with auto-adaptable BC is 1.5-2 times lower than one of the DA with con-
ventional BC. The same tendencies are preserved for different optical depth and
temperature distributions inside the volume.

The values of maximum absolute and averaged over the perimeter square
root discrepancies are presented in the Tab. 1.

Table 1
Absolute and mean square averaged discrepancies for resulting radiation flux calculated
by the differential approximation method with standard and auto-adaptable BC.
Optical depthst=0.5,71=1.0andt=2.0

Discrepancy, %
Geometry Method =05 t=1.0 t1=2.0
Abs. | Meansq. | Abs. | Meansg. | Abs. Mean sq.
Rectangular AABC 16 5.6 9 4.9 7 3.6
—»— Standard BC 23 9.3 17 7.8 8 5.0
Triangular AABC 20 8.8 12 7.3 12 6.0
—»— Standard BC 29 14.0 19 11 18 8.0
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CONCLUSIONS

Utilization of self-consistent auto-adaptable BC let one improve accuracy of
the differential approximation method. This is particularly relates to evaluation
of the resulting radiation flow at the boundary.

The numerical simulation performed for “worst” optical depth conditions
(r = 1) show that the mean square errors of the resulting radiative fluxes calcu-
lated along the boundary of the rectangular and triangular test areas were de-
creased 1.5-2 times by using auto-adaptable boundary conditions. Utilization of
the mentioned approach could be recommended for the radiation fluxes determi-
nation in non-homogeneous non-symmetric two- and three-dimensional systems,
such as furnaces, boilers, combustion chambers.

Good results, obtained by using the AA BC encourage one to develop new
methods of auto-adaptable differential approximation basing on numerical algo-
rithms by recalculation of anisotropy parameter a. Specific meshing may be uti-
lized for this aim. Improvement of the DA requires standard, internationally ap-
proved benchmarks for 3D-radiation transfer problem solution. Profound testing
of the auto-adaptable BC, particularly for different schematics of radiation field
near the boundary, is a matter of further investigations.
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