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Differential approximation is derived from radiation transfer equation by averaging over 
the solid angle. It is one of the more effective methods for engineering calculations of radia-
tive heat transfer in complex three-dimensional thermal power systems with selective and 
scattering media. The new method for improvement of accuracy of the differential approxi- 
mation based on using of auto-adaptable boundary conditions is introduced in the paper.  
The efficiency of the named method is proved for the test 2D-systems. Self-consistent  
auto-adaptable boundary conditions taking into consideration the nonorthogonal component  
of the incident to the boundary radiation flux are formulated. It is demonstrated that taking in-
to consideration of the non- orthogonal incident flux in multi-dimensional systems, such as 
furnaces, boilers, combustion chambers improves the accuracy of the radiant flux simulations 
and to more extend in the zones adjacent to the edges of the chamber. 

Test simulations utilizing the differential approximation method with traditional boundary 
conditions, new self-consistent boundary conditions and “precise” discrete ordinates method 
were performed. The mean square errors of the resulting radiative fluxes calculated along the 
boundary of rectangular and triangular test areas were decreased 1.5–2 times by using auto-
adaptable boundary conditions. Radiation flux gaps in the corner points of non-symmetric sys-
tems are revealed by using auto-adaptable boundary conditions which can not be obtained by 
using the conventional boundary conditions.  
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УЛУЧШЕНИЕ ТОЧНОСТИ ДИФФЕРЕНЦИАЛЬНОГО  

ПРИБЛИЖЕНИЯ РАСЧЕТА ТЕПЛООБМЕНА ИЗЛУЧЕНИЕМ 
В МНОГОМЕРНЫХ СИСТЕМАХ ПРИ ИСПОЛЬЗОВАНИИ 

САМОСОГЛАСОВАННЫХ ГРАНИЧНЫХ УСЛОВИЙ 
 

Докт. физ.-мат. наук ДОБРЕГО К. В. 
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Дифференциальное приближение, получаемое путем усреднения по телесному углу 
уравнения переноса излучения, является одним из наиболее эффективных методов ин-
женерного расчета лучистого теплообмена в сложных многомерных теплоэнергетиче-
ских системах с селективной и рассеивающей средой. Представлен подход для улучше-
ния точности расчета лучистого теплообмена методом дифференциального приближе-
ния в многомерных системах за счет использования самосогласованных граничных 
условий. Продемонстрирована эффективность предложенного подхода на примере  
модельных двумерных систем. Записаны самосогласованные граничные условия, учи-
тывающие неортогональность падающего потока излучения к поверхности границы  
и алгоритм их использования. Показано, что учет неортогональности падающего потока 
повышает качество расчета радиационного теплообмена в многомерных системах, осо-
бенно вблизи угловых зон. 
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Расчеты, проведенные с использованием традиционных и самосогласованных гра-
ничных условий, сравниваются с «точным» расчетом, выполненным методом дискрет-
ных ординат. Показано, что использование нового подхода позволяет уменьшить сред-
неквадратичную погрешность расчета результирующего потока излучения на стенку  
в 1,5–2 раза. Использование самосогласованных граничных условий дает возможность вы-
явить скачок результирующего потока в угловых точках многомерной системы, который 
невозможно получить при расчетах с использованием традиционных граничных условий. 

 

Ключевые слова: лучистый теплообмен, численное моделирование, дифференци-
альное приближение, граничные условия. 
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Introduction. There are many combustion, power engineering, atmospheric 
heat transfer and other problems which demand prompt calculation of radiation 
fluxes with relatively low accuracy. The differential approximation (DA) is the 
fast and effective method for radiation transfer calculation if desired accuracy of 
radiation fluxes evaluation is of the order of 15–20 % and there is no highly ani-
sotropic radiation fluxes in the system [1]. It takes usually 10–100 times less 
computational time than “precise” methods of radiation transfer equation inte-
gration for non-uniform medias. The economy of CPU time becomes increasing-
ly significant when two and three- dimensional systems with selective media are 
considered. 

At higher optical densities τ > 10 the “precise” methods meet with difficul-
ties connected with increase of the computations for each direction and increase 
of the iterations to reach the given accuracy. The resulting flux, calculated by 
discrete ordinate method, may get significant errors when the difference between 
values of the incident to the boundary and irradiated by the boundary fluxes  
is small. The DA-method is free of this privation because it calculates the resul- 
ting flux directly. 

Another advantage of the DA-method – is that it can be easily incorporated 
into the computational routines of heat and mass transfer and gas dynamics 
problems. Standard computer codes able to resolve second order steady state 
differential equations may be utilized. 

Differential approximation is a basic approach for reducing integro-diffe- 
rential equation for radiative flux to differential form. It is used since the  
40th [2–4]. A common misjudge about the DA, is that it is invalid for optically 
thin systems [5]. Actually, the only assumption grounding the DA is sufficient 
uniformity of the radiation field, or more specifically, of the angular distribution 
of radiation intensity I(r, l). The adequate boundary conditions for the DA equa-
tion (4) guarantee good accuracy of the DA method for the arbitrary optical den-
sities and non-homogeneous media [6, 7]. The boundary conditions are formed 
with radiation energy conservation equations, formulated with specific assump-
tion about the emissivity and reflectivity of boundaries and radiation energy field 
near the walls (for example, diffusive gray walls and isotropic semispherical  
irradiation of to the walls may be considered). 

Taking in mind importance of the boundary conditions for DA, Olfe [7] pro-
posed modified differential approximation method (MDA). The main idea  
of the MDA is consideration of radiation from the boarders together with the 
absorbing media and the media self radiation separately. As reported [5, 7], 
MDA provides high accuracy, close to the accuracy of the higher order spherical 
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harmonics approximations (P3, P5) and “precise” discrete ordinate method.  
At the same time the integro-differential radiation transfer equation for enclosure 
appears in MDA, which complicates utilization of this method. Another ap-
proach improving the quality of the DA is, so-called, quazi differential appro- 
ximation (QDA) [8]. According to this method the local adjustment coefficients 
for the DA are calculated on the basis of exact solution of radiation transfer 
equation. This makes DA more accurate for the fixed thermodynamic situation. 
After the thermodynamic situation is changed in a system a new adjustment  
is necessary. A higher order Spherical harmonics methods (P3, P5) are most  
often used to increase accuracy of radiation heat transfer calculation [8, 9]. This is 
particularly effective for calculation of radiation fields within the relatively thick 
optical media. The accuracy of the Pn methods in vicinity of the boundaries is simi-
lar to the standard DA and depend on adequacy of the boundary conditions. 

The Marshak’s [1, 5] boundary conditions or other BC based on the physical 
assumptions regarding the angular distribution of the intensity near the boundary 
are usually applied to solve governing equation. Practically, the boundary points 
are not symmetric in the multi-dimensional systems and application of the con-
ventional boundary conditions may lead to a loss of accuracy. For example,  
the calculations of the resulting radiative flux along the boarders of rectangular 
and triangular volumes, Fig. 1, demonstrate that DA routine do not reveal  
the radiation flux gaps in the corner points, see Fig. 2. Inaccuracy of the BC is 
one of the main sources of errors for the DA-method modifications mentioned 
above [10]. 
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Fig. 1. The geometry of the two-dimensional test areas 
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Fig. 2. The relative resulting flux along the boarder of the rectangular, calculated by DA  

with standard BC – dashed line; discrete ordinates “precise” method – solid line;  
effective optical depth τ = 1; temperature of the media T = 1500 K; walls temperature T0 = 1300 K 
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to utilize conventional solution of the DA equation for adjusting the boundary 
conditions and, consequently, obtaining the higher accuracy of DA solution  
at the next step. It means that information about the geometry, local radiation 
properties of the media and temperature fields is used to improve the boundary 
conditions. The new auto-adaptable (AA) boundary conditions are formulated by 
using this idea. Though our formulation of the auto-adaptable boundary condi-
tions is not the only possible, the numerical simulation and tests demonstrate that 
this approach improves the solution for radiation fluxes qualitatively and quanti-
tatively. All the analysis is presented for the non-scattering media and mono-
chromatic radiation, although it can be easily extended for more practical situa-
tions.  

Theory of the method. The equation of the radiation transfer in selective 
scattering and absorbing media may be written in the form 

 
2

0 0

( , ) ( ) ( , ) ( , ) ( , ) ( , )sin ,
4

dI r l I r l B Т r d p l l I r l d
dr

π π
ω ω

ω ω ω ω ω ω
σ ′ ′ ′ ′ ′= − κ + σ + κ + ϕ θ θ
π ∫ ∫  (1) 

 

where ( , )I r lω  – radiation intensity at spectral frequency ω, in the point defined 
by radius vector r in the direction defined by vector l; ωκ – absorption coeffi-
cient; ( , )B T rω  – black body spectral radiation intensity at temperature T and 
radiation frequency ω; ωσ – scattering coefficient; ( , )p l l′ – scattering indicatrix. 

The differential approximation equations may be derived by averaging (1) 
over the solid angle [1–3]. For non-scattering media one can obtain the sys- 
tem of equations for spectral radiation energy density ( )U rω  and radiation  

flux ( ) :S rω


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where a – parameter characterizing anisotropy of the radiation intensity ( , )I r lω  
angular distribution 

 

4

4

( , )
( ) .

( ( , ))

I r l d
a r

l I r l ld

ω
π

ω
π

∇ Ω
=

∇ Ω

∫

∫
                                        (4) 

 

The spectral radiation energy density and radiation flux are defined as fol-
lows: 

1

4

( ) ( , ) ;cU r I r l dω ω
π

≡ Ω∫   
4

( ) ( , ) .S r I r l ldω ω
π
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

 

 

The first equation of the system (2), (3) is the exact radiation energy continuity 
equation. The second equation is approximate as far as coordinate dependent ani-
sotropy parameter a is fixed (a = 3 corresponds to the P1 spherical harmonics ap-
proximation and a = 4 – to the two-flux Schwartzchild-Schuster approximation). 
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Combining equations (2) and (3) and taking, for instance, a = 4, we obtain  
a second order differential equation for ( , )U r tω  

 

1 4 16 ( , ) 0.U U c B T rω ω ω
 ∇ ∇ − κ + πκ = κ 

                          (5) 

 

Assuming the incident radiation is hemispherically isotropic and the flux 
vector is orthogonal to the boundary, one can obtain the following correlation for 
incident radiation [2] 

 

.
2
c U Sω ω

δ

=


                                                 (6) 

 

Here subscript δ indicate the value at (in the vicinity of) the boundary,  
column parentheses define the module of vector. 

The radiation intensity near the boundary may be considered as a superposi-
tion of incident radiation with intensity Iin, emission of the wall ( , ),B T rωε  and 
scattered- reflected part of incident radiation with intensity (1 – ε)Iin. Simple 
possible schematics of the radiation field, which may be titled as “isotropic” (a) 
and “exocentric” (b) are presented on the Fig. 3.  
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Fig. 3. Schematics of radiation field near the boundary 
 

Let us write down the boundary conditions for the simpler “isotropic” model 
of non orthogonal to the boundary radiative flux. The total radiant energy densi-
ty for the grey boundary may be written as follows 

 

(2 ) ( , ),
2 in
c U I B T r

δ

= π − ε + πε                                    (7) 

 

where and below we omit index ω near radiation intensity symbols for better 
readability of formulas.  

The components of the resulting flux near the boundary may be written as: 
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Combining (3), (7) and (8) one can obtain the following BC for the equation (5): 
 

cos 1( , ) ( , );
2 2

c U c U B T r B T r
a x

∂ ε + θ − − = − πε − πε κ ∂ − ε 
                  (9) 

 

sin( , ) .
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The value of the incident flow vector angle θ, as well as cosθ and sinθ can be 
estimated by using the system (8) if the radiation energy density U

δ
 is known 

in the vicinity of the boundary. Excluding inI  from (8) one can obtain: 
 

cos (1 ) [ ( , )]sin ;y y xS S S B T rθ − − ε = + πε θ
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2cos (1 ) [ ( , )] 1 cos .y y xS S S B T rθ − − ε = + πε − θ
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Square equation for cosθ will have the form 
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Solution of (10) 
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where 1ρ = − ε  – reflectivity; ( , );x xU S B T r= + πε
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The formulas (9) define the self – consistent auto-adaptable boundary condi-
tion. Equation (5) together with boundary conditions (9), (11) can be solved by 
iterations starting from “zero-approach” at θ = 0. 

Numerical simulation. To test differential approximation method with the 
Auto-Adaptable BC, we calculated the resulting flux near the boundaries by  
using equation (5) with boundary conditions (9), (11). This solution was com-
pared to the results obtained by means of deferential approximation with stan- 
dard boundary conditions and “precise” discrete ordinate solution [11]. The com-
putations were performed for wide range of optical depths and temperature dis-
tribution. Serious attention was paid to the benchmark method verification as far  
as discrete ordinate method may give serious errors at situations of high optical 
density, “ray” effect and some others. For example, the resulting flux, which is 
the difference between incident to the boundary flux and irradiated by the 
boundary flux, may get dramatic errors when the values of incident and boun- 
dary irradiating fluxes are close. The DA-method is dealing with the resulting 
flux directly and is free of this disadvantage. 

All the calculations were realized by the finite elements method. One itera-
tion was sufficient for auto adjusting of boundary condition (9), (11) in our case. 
The second and following iterations did not contribute to the accuracy  
of the solution within 1 %. Consequently, the averaged computation time for  
DA with auto-adaptable BC is 2 times more than with fixed BC and about  
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50–100 times less than “precise” solution implemented by discrete ordina- 
tes method [11]. The resulting flux near the boundary of equilateral triangular 
and rectangular test areas as related to its maximum value is presented on Fig. 4. 
The temperature of the irradiating media is 1500 K, the walls have the tempera-
ture 1300 K. The effective optical depth τ, which is presented in the notes to the 
Figures and Table, was calculated by the square of the two-dimensional test  
area S, as follows .Sτ = κ  At the optical depth τ ≈ 1.0 the accuracy of the DA 
is the worst. At higher τ > 5.0 and lower τ < 0.2 optical depth the accuracy be-
comes better and approaches the accuracy of the discrete ordinate solution. 

For calculation of the resulting flux normal component ∂U/∂x and tangential 
component ∂U/∂y (which is necessary for obtaining cosθ, Eq. (11)), the finite 
element triangles adjacent to the corner points were taken symmetric and con-
gruent, otherwise the computational inaccuracy may corrupt the positive effect 
of using of the AA BC. 
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Fig. 4. The relative resulting flux along two boarders of the rectangular and triangular areas,  
calculated by the standard DA-method – dashed, by DA with auto-adaptable BC – pointed  

and discrete ordinates “precise” method – solid line; effective optical depth τ = 1 
 

It is follows from the calculations, Fig. 4, that new approach gives more  
accurate solution. Though the maximum absolute discrepancy is not reduced 
essentially, the averaged over the perimeter square root discrepancy of the  
DA with auto-adaptable BC is 1.5–2 times lower than one of the DA with con-
ventional BC. The same tendencies are preserved for different optical depth and 
temperature distributions inside the volume. 

The values of maximum absolute and averaged over the perimeter square 
root discrepancies are presented in the Tab. 1.  

Table 1 
Absolute and mean square averaged discrepancies for resulting radiation flux calculated  

by the differential approximation method with standard and auto-adaptable BC.  
Optical depths τ = 0.5, τ = 1.0 and τ = 2.0 

 

Geometry Method 
Discrepancy, % 

τ = 0.5 τ = 1.0 τ = 2.0 
Abs. Mean sq. Abs. Mean sq. Abs. Mean sq. 

Rectangular AA BC 16 5.6 9 4.9 7 3.6 

–»– Standard BC 23 9.3 17 7.8 8 5.0 

Triangular AA BC 20 8.8 12 7.3 12 6.0 

–»– Standard BC 29 14.0 19 11 18 8.0 
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C O N C L U S I O N S 

 
Utilization of self-consistent auto-adaptable BC let one improve accuracy of 

the differential approximation method. This is particularly relates to evaluation 
of the resulting radiation flow at the boundary. 

The numerical simulation performed for “worst” optical depth conditions  
(τ = 1) show that the mean square errors of the resulting radiative fluxes calcu-
lated along the boundary of the rectangular and triangular test areas were de-
creased 1.5–2 times by using auto-adaptable boundary conditions. Utilization of 
the mentioned approach could be recommended for the radiation fluxes determi-
nation in non-homogeneous non-symmetric two- and three-dimensional systems, 
such as furnaces, boilers, combustion chambers.  

Good results, obtained by using the AA BC encourage one to develop new 
methods of auto-adaptable differential approximation basing on numerical algo-
rithms by recalculation of anisotropy parameter a. Specific meshing may be uti-
lized for this aim. Improvement of the DA requires standard, internationally ap-
proved benchmarks for 3D-radiation transfer problem solution. Profound testing 
of the auto-adaptable BC, particularly for different schematics of radiation field 
near the boundary, is a matter of further investigations. 
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