МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АД С ВСТРАИВАЕМЫМ КОМБИНИРОВАННЫМ ТОРМОЗНЫМ УСТРОЙСТВОМ

Кандидаты техн. наук, доценты СОЛЕНКОВ В. В., БРЕЛЬ В. В.

Гомельский государственный технический университет имени П. О. Сухого

Как известно, точное аналитическое исследование картины электромеханического преобразования энергии в реальной электрической машине практически не удается. Этому препятствуют сложность и многообразие процессов и связей в ней. Поэтому на практике рассматривают так называемую идеализированную электрическую машину, для которой обычно принимаются следующие допущения [1]:

1) магнитная цепь ненасыщена, энергия магнитного поля сосредоточена в воздушном зазоре;

 механические потери и потери в стали пренебрежимо малы (не учитываются потери трения в подшипниках, явления гистерезиса и вихревых токов);

3) распределение МДС и индукции в пространстве синусоидально (не учитываются высшие гармоники, создаваемые обмотками реальной машины);

4) воздушный зазор равномерен;

5) энергия электростатического поля невелика (не учитывается влияние емкостей внутри обмоток и между ними);

6) активные сопротивления и индуктивности рассеяния обмоток статора, а также максимальные значения взаимоиндуктивностей между любыми обмотками статора и ротора неизменны в течение исследуемых процессов.

Несмотря на определенные упрощения, такой подход позволяет с достаточной для инженерной практики точностью описать поведение электромеханических устройств в различных режимах работы.

Основная часть исследования. Учитывая изложенное выше, перечисленные допущения использовали при математическом описании переходных процессов в асинхронных двигателях с встраиваемыми комбинированными тормозными устройствами (АД с ВКТУ) [2, 3]. Исследуемая модель АД с ВКТУ, выполненная на базе трехфазного АД с короткозамкнутым ротором, приведена на рис. 1. Пунктиром условно показано последовательное включение обмотки силового растормаживающего электромагнита с одной из фазных обмоток базового двигателя (в данном случае – с обмоткой фазы *A*). Последовательное включение обмотки электромагнита используется для исследования переходных процессов при несимметричных схемах управления силовым электромагнитом.

Короткозамкнутая обмотка ротора представлена двумя сосредоточенными обмотками, магнитные оси которых совпадают с ортогональными осями d и q, жестко связанными с ротором. Подобная замена, согласно [4], не вызывает затруднений при определении связи между расчетными параметрами, используемыми в теории установившегося режима, и параметрами, применяемыми при исследовании переходных процессов.

Рис. 1. Модель АД с ВКТУ в непреобразованной системе координат

Дополнительно было принято, что:

• фазные обмотки статора базового двигателя симметричны, т. е. имеют одинаковое число витков, одинаковые активные сопротивления, самоиндуктивности и взаимный сдвиг магнитных осей;

• питание осуществляется от сети бесконечно большой мощности (при этом процессы, происходящие в тормозном электродвигателе, не оказывают влияния на сеть);

• напряжения фаз А, В и С сети синусоидальны и симметричны, т. е.

$$u_{A} = U_{m} \cos(\omega_{o}t + \alpha_{o});$$

$$u_{B} = U_{m} \cos(\omega_{o}t + \alpha_{o} - 120^{\circ});$$

$$u_{C} = U_{m} \cos(\omega_{o}t + \alpha_{o} + 120^{\circ}),$$
(1)

где U_m – амплитудное значение фазных напряжений; ω_0 – угловая частота сети; α_0 – начальная фаза напряжения u_A .

С учетом принятых допущений переходные процессы в АД с ВКТУ могут быть описаны системой дифференциальных уравнений, содержащей в общем случае три типа уравнений: уравнения электрического равновесия, составленные для контуров каждой из обмоток по второму закону Кирхгофа; уравнения моментов (его называют также уравнением движения ротора или уравнением механического равновесия) и уравнения преобразования электромагнитной энергии в механическую.

Уравнения электрического равновесия для фаз *A*, *B* и *C* статора исследуемого АД с ВКТУ имеют вид:

$$u_{A} = \frac{d\Psi_{A}}{dt} + r_{1}i_{A} + u_{3};$$

$$u_{B} = \frac{d\Psi_{B}}{dt} + r_{1}i_{B};$$

$$u_{C} = \frac{d\Psi_{C}}{dt} + r_{1}i_{C}.$$

$$(2)$$

25

Соответственно для эквивалентных обмоток ротора *d* и *q* можно записать:

$$0 = \frac{d\psi_d}{dt} + r_2 i_d;$$

$$0 = \frac{d\psi_q}{dt} + r_2 i_q.$$
(3)

)

При этом потокосцепления фазных обмоток статора ψ_A , ψ_B , ψ_C и эквивалентных обмоток ротора ψ_d и ψ_q определяются по соотношениям:

$$\begin{split} \psi_{A} &= (L_{1} - M_{1})i_{A} + M_{12}i_{d}\cos\gamma - M_{12}i_{q}\sin\gamma; \\ \psi_{B} &= (L_{1} - M_{1})i_{B} + M_{12}i_{d}\cos(\gamma - 120^{\circ}) - M_{12}i_{q}\sin(\gamma - 120^{\circ}); \\ \psi_{C} &= (L_{1} - M_{1})i_{C} + M_{12}i_{d}\cos(\gamma + 120^{\circ}) - M_{12}i_{q}\sin(\gamma + 120^{\circ}); \\ \psi_{d} &= L_{2}i_{d} + M_{12} \Big[i_{A}\cos\gamma + i_{B}\cos(\gamma - 120^{\circ}) + i_{C}\cos(\gamma + 120^{\circ}) \Big]; \\ \psi_{q} &= L_{2}i_{q} + M_{12} \Big[i_{A}\sin\gamma + i_{B}\sin(\gamma - 120^{\circ}) + i_{C}\sin(\gamma + 120^{\circ}) \Big]. \end{split}$$
(4)

В выражениях (2)–(4) использованы следующие обозначения: $r_1 = r_A = r_B = r_C$ – активное сопротивление фазы статора; $r_2 = r_d = r_q$ – активное сопротивление одной из эквивалентных обмоток ротора; $L_1 = L_A = L_B = L_C$ – полная индуктивность фазы статора; $L_2 = L_d = L_q$ – полная индуктивность одной из эквивалентных обмоток ротора; $M_1 = M_{AB} = M_{BC} = M_{CA}$ – взаимоиндуктивности между любыми двумя обмотками статора; $M_{12} = M_{Ad} = M_{Bd} = ...$ – максимальная величина взаимоиндуктивности между любой обмоткой статора и любой эквивалентной обмоткой ротора; u_3 – мгновенное значение напряжения на зажимах электромагнита; i – ток в фазной обмотке статора или в эквивалентной обмотке ротора; γ – угол поворота между магнитными осями обмоток статора и ротора (рис. 1).

Отметим, что в рассматриваемом случае включения растормаживающего электромагнита последовательно с одной из обмоток статора фазные напряжения, токи и потокосцепления обмоток базового электродвигателя становятся несимметричными. Однако линейные напряжения при условии сети бесконечно большой мощности остаются по-прежнему симметричными. Учитывая это, а также соотношения (2), уравнения равновесия относительно линейных напряжений u_{AB} , u_{BC} и u_{CA} можно записать следующим образом:

$$u_{AB} = \frac{d(\Psi_{A} - \Psi_{B})}{dt} + r_{1}(i_{A} - i_{B}) + u_{3};$$

$$u_{BC} = \frac{d(\Psi_{B} - \Psi_{C})}{dt} + r_{1}(i_{B} - i_{C});$$

$$u_{CA} = \frac{d(\Psi_{C} - \Psi_{A})}{dt} + r_{1}(i_{C} - i_{A}) - u_{3},$$
(5)

где с учетом (1):

$$u_{AB} = U_m \sqrt{3} \sin(\omega_0 t + \alpha_0 + 120^\circ);$$

$$u_{BC} = U_m \sqrt{3} \sin(\omega_0 t + \alpha_0);$$

$$u_{CA} = U_m \sqrt{3} \sin(\omega_0 t + \alpha_0 - 120^\circ).$$
(6)

Уравнение моментов в соответствии с законом сохранения энергии имеет вид

$$M = \frac{J}{p} \frac{d\omega_{\rm p}}{dt} + M_{\rm c} + M_{\rm T} + M_{\rm M}(\omega_{\rm p}), \qquad (7)$$

где M – электромагнитный момент, развиваемый электродвигателем; J – суммарный момент инерции вращающихся масс, приведенный к оси вращения электродвигателя; p – число пар полюсов электродвигателя; ω_p – угловая скорость ротора, эл. рад./с; M_c – статический момент сопротивления; $M_{\rm T}$ – тормозной момент, возникающий в результате трения фрикционных накладок тормозного устройства (электромеханический тормоз); $M_{\rm M}(\omega_p)$ – тормозной момент электромагнитной муфты скольжения (электромагнитный тормоз).

Характер и длительность действия тормозного момента электромеханического тормоза можно определить из следующих соображений. В отключенном состоянии, когда напряжение на обмотках электродвигателя и электромагнита отсутствует, тормозной момент согласно [5] равен

$$M_{\rm ro} = F_{\rm np} v R_{\rm cp} z, \tag{8}$$

где F_{np} – усилие возвратной пружины; v – коэффициент трения материала фрикционных накладок; R_{cp} – средний радиус поверхности трения; z – коэффициент, учитывающий конструктивные особенности тормозного устройства.

После подачи напряжения на якорь растормаживающего силового электромагнита начинает действовать тяговое усилие $F_{\text{тяг}}$, увеличивающееся во времени и направленное против усилия пружины. При этом величина $M_{\text{т}}$, пропорциональная разности $F_{\text{пр}} - F_{\text{тяг}}$, будет уменьшаться и станет равной нулю в момент трогания якоря, когда $F_{\text{пр}} = F_{\text{тяг}}$. С этого момента якорь притягивается к сердечнику электромагнита, размыкая тем самым фрикционные накладки тормоза. Следовательно, длительность действия тормозного момента на вал электродвигателя равна времени трогания $t_{\text{тр}}$ растормаживающего электромагнита. Учитывая это, а также приняв для определенности, что со стороны нагрузки на вал действует момент сопротивления реактивного типа (типа «сухого» трения), уравнение (7) перепишем следующим образом:

$$\frac{J}{p}\frac{d\omega_{\rm p}}{dt} = M - (M_{\rm c} + M_{\rm T} lt_{\rm Tp} + M_{\rm M}(\omega_{\rm p})) \text{sign } \omega_{\rm p}, \qquad (9)$$

где $1t_{\rm TP}$ и sign $\omega_{\rm p}$ – функции, определяемые соотношениями:

$$1t_{\rm rp} = \begin{cases} 1 \ \text{при } t < t_{\rm rp}; \\ 0 \ \text{при } t \ge t_{\rm rp}; \end{cases}$$
(10)

sign
$$\omega_{p} = \begin{cases} 1 \text{ при } \omega_{p} > 0; \\ -1 \text{ при } \omega_{p} < 0. \end{cases}$$
 (11)

Наконец, электромагнитный момент АД с ВКТУ в соответствии с [1] определяется по формуле

$$M = \frac{dW_{\rm 3M}}{d\gamma} p, \tag{12}$$

где $W_{_{\rm ЭМ}}$ – полная электромагнитная энергия тормозного двигателя,

$$W_{_{3M}} = \frac{1}{2} \Big[\Psi_A i_A + \Psi_B i_B + \Psi_C i_C + \Psi_d i_d + \Psi_q i_q \Big].$$
(13)

Подставляя (13) в (12) и учитывая при этом соотношения (4), окончательно получим:

$$M = -M_{12}p \ i_A \ i_d \sin\gamma + i_q \cos\gamma +$$

+
$$i_B \Big[i_d \sin\gamma - 120^\circ + i_q \cos\gamma - 120^\circ \Big] +$$

+
$$i_C \Big[i_d \sin\gamma + 120^\circ + i_q \cos\gamma + 120^\circ \Big] .$$
 (14)

Таким образом, уравнения (4)–(6), (9) и (14) образуют систему, описывающую электромеханические переходные процессы в тормозных электродвигателях в реальных фазных координатах. Используя решение системы относительно токов в обмотках, нетрудно найти потери энергии в статоре и роторе конкретного электродвигателя по соотношениям:

$$W_{s} = r_{1} \int_{0}^{t} i_{A}^{2} + i_{B}^{2} + i_{C}^{2} dt;$$

$$W_{r} = r_{2} \int_{0}^{t} i_{d}^{2} + i_{q}^{2} dt,$$
(15)

C

где W_s , W_r – потери энергии в статоре, роторе.

Наличие периодических коэффициентов в уравнениях (4), (5) и (14) значительно усложняет решение полученной системы. Поэтому с помощью известных преобразований и формул [1, 4] перейдем к уравнениям в ортогональной системе координат α , β , неподвижной относительно несимметричной части АД с ВКТУ (рис. 2):

Рис. 2. Ортогональная система координат α , β

$$u_{s\alpha} = \frac{d\psi_{s\alpha}}{dt} + r_{1}i_{s\alpha} + \frac{2}{3}u_{g};$$

$$(16) \qquad 0 = \frac{d\psi_{r\alpha}}{dt} + r_{2}i_{r\alpha} + \omega_{p}\psi_{r\beta};$$

$$(17) \qquad 0 = \frac{d\psi_{s\beta}}{dt} + r_{1}i_{s\beta};$$

$$M = \frac{3}{2} M_{12} p \ i_{r\alpha} i_{s\beta} - i_{s\alpha} i_{r\beta} \ , \tag{18}$$

где

$$u_{s\alpha} = U_m \cos(\omega_0 t + \alpha_0);$$

$$u_{s\beta} = U_m \sin(\omega_0 t + \alpha_0);$$

$$(19)$$

$$\psi_{s\alpha} = (L_1 - M_1)i_{s\alpha} + M_{12}i_{r\alpha};$$

$$\psi_{s\beta} = (L_1 - M_1)i_{s\beta} + M_{12}i_{r\beta};$$

$$(20)$$

$$\Psi_{r\alpha} = L_2 i_{r\alpha} + \frac{3}{2} M_{12} i_{s\alpha};$$

$$\Psi_{r\beta} = L_2 i_{r\beta} + \frac{3}{2} M_{12} i_{s\beta}.$$
(21)

При этом величины реальных токов в обмотках электродвигателя определяются по формулам обратных преобразований и имеют вид:

С учетом (22) и (23) выражения для потерь энергии (15) перепишем следующим образом:

$$W_{s} = \frac{3}{2} r_{1} \int_{0}^{t} i_{s\alpha}^{2} + i_{s\beta}^{2} dt;$$

$$W_{r} = r_{2} \int_{0}^{t} i_{r\alpha}^{2} + i_{r\beta}^{2} dt.$$
(24)

29

Далее, заменив токи роторных обмоток в (16)–(18), (20), (21) и (24) их приведенными величинами подобно [6] и введя в уравнения параметры Т-образной схемы замещения асинхронного двигателя, получим:

$$u_{s\alpha} = \frac{d\Psi_{s\alpha}}{dt} + r_{1}i_{s\alpha} + \frac{2}{3}u_{3};$$

$$u_{s\beta} = \frac{d\Psi_{s\beta}}{dt} + r_{1}i_{s\beta};$$

$$0 = \frac{d\Psi_{r\alpha}}{dt} + r_{2}'i_{r\alpha}' + \omega_{p}\Psi_{r\beta};$$

$$0 = \frac{d\Psi_{r\beta}}{dt} + r_{2}'i_{r\beta}' - \omega_{p}\Psi_{r\alpha};$$

$$M = \frac{3}{2}\frac{x_{m}}{\omega_{o}}p \quad i_{r\alpha}'i_{s\beta} - i_{s\alpha}i_{r\beta}';$$

$$W_{s} = \frac{3}{2}r_{1}\int_{0}^{t}i_{s\alpha}^{2} + i_{s\beta}^{2} \quad dt;$$

$$W_{r} = r_{2}'\int_{0}^{t}i_{r\alpha}'^{2} + i_{r\beta}'' \quad dt,$$

$$(25)$$

$$(25)$$

$$(25)$$

$$(26)$$

$$(26)$$

$$(27)$$

где

$$\begin{aligned}
\Psi_{s\alpha} &= \omega_{o}^{-1} \quad x_{s}i_{s\alpha} + x_{m}i_{r\alpha}'; \\
\Psi_{s\beta} &= \omega_{o}^{-1} \quad x_{s}i_{s\beta} + x_{m}i_{r\beta}'; \\
\Psi_{r\alpha} &= \omega_{o}^{-1} \quad x_{r}i_{r\alpha}' + x_{m}i_{s\alpha}; \\
\Psi_{r\beta} &= \omega_{o}^{-1} \quad x_{r}i_{r\beta}' + x_{m}i_{s\beta}, \end{aligned}$$
(28)

 $x_s = x_1 + x_m$ — полное индуктивное сопротивление обмотки статора; $x_r = x'_2 + x_m$ — полное индуктивное сопротивление приведенной обмотки ротора; x_1 и x'_2 — индуктивные сопротивления рассеяния статорной и приведенной роторной обмоток; x_m — индуктивное сопротивление взаимоиндукции.

В результате преобразований получены системы уравнений (25), (26) и (28) с постоянными коэффициентами, описывающие совместно с уравнением (9) электромеханические переходные процессы в идеализированных асинхронных двигателях с тормозными устройствами. Отличие этой системы от известных [1, 6] заключается в наличии дополнительного слагаемого $\frac{2}{3}u_3$ в уравнении равновесия напряжений для эквивалентной обмотки статора по оси α и дополнительных слагаемых $M_{\rm T}1t_{\rm Tp}$ и $M_{\rm M}(\omega_{\rm p})$ в уравнении моментов. Число уравнений в системе (десять), на первый взгляд, меньше числа неизвестных (тринадцать). В действительности же новые неизвестные u_3 , $M_{\rm T}$ и $M_{\rm M}(\omega_{\rm p})$ могут быть выражены через токи (потокосцепления) и параметры, входящие в эти уравнения.

В частном случае, когда $u_3 = 0$, системы уравнений (9), (25), (26) и (28) позволяют исследовать переходные процессы в тормозных электродвигателях с симметричными схемами управления. При $u_3 = 0$; $M_T = 0$ и $M_M(\omega_p) = 0$ уравнения (9), (25), (26) и (28) совпадают с уже известными уравнениями электромеханического преобразования энергии в асинхронных двигателях общепромышленного исполнения [1, 6]. Последнее обстоятельство подтверждает достоверность преобразований и выводов, проведенных выше.

Из ряда факторов, оказывающих наибольшее влияние на изменение параметров АД в переходных режимах, следует отметить насыщение магнитной цепи. При этом различают насыщение по пути основного магнитного потока и по пути потоков рассеяния. В зависимости от величины основного магнитного потока, а следовательно, и индукции изменяется магнитная проводимость по пути основного магнитного потока. Это проявляется в основном как изменение сопротивления взаимоиндукции обмоток статора и ротора x_m . Влияние величины основного магнитного потока на проводимость рассеяния незначительно, и им пренебрегают [1]. Величина основного магнитного потока связана с ЭДС воздушного зазора, т. е. зависит от напряжения питания асинхронного двигателя.

Насыщение магнитной цепи по пути потоков рассеяния зависит от величин токов в обмотках, с увеличением которых, например при пуске асинхронного двигателя, сопротивление рассеяния уменьшается, что обусловлено увеличением потоков рассеяния вокруг пазов. Однако для широкого ряда общепромышленных двигателей малой и средней мощности экспериментальные исследования показали, что уравнения (9), (25), (26) и (28) для идеализированной машины справедливы и для реальной насыщенной асинхронной машины [1]. Отсюда следует, что изменение взаимоиндукции x_m при несимметрии одной из фаз статора является незначительным для упомянутых машин.

вывод

Из рассмотренного следует, что приведенная система уравнений для АД с ВКТУ является адекватной и позволяет математически описывать переходные процессы в различных АД с ВКТУ на базе электромеханического тормоза и электромагнитной муфты скольжения.

ЛИТЕРАТУРА

1. С и п а й л о в, Г. А. Математическое моделирование электрических машин / А. В. Сипайлов, А. В. Лоос. – М.: Высш. шк., 1980. – 176 с.

2. Соленков, В. В. Асинхронный электродвигатель со встроенным комбинированным тормозным устройством на базе электромеханического тормоза и электромагнитной муфты / В. В. Соленков, В. В. Брель // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2011. – № 6. – С. 20–26.

3. Соленков, В. В. Бесконтактные схемы форсировки в тормозных устройствах асинхронных двигателей / В. В. Соленков, В. В. Брель // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2009. – № 4. – С. 31–36.

4. К о н о н е н к о, Е. В. Замена короткозамкнутой обмотки ротора асинхронного двигателя эквивалентной двухфазной / Е. В. Кононенко // Известия Томского политехнического института. – 1974. – Т. 200. – С. 3–5.

5. А л е к с а н д р о в, М. П. Тормозные устройства / М. П. Александров, А. Г. Лысяков. – М.: Машиностроение, 1985. – 312 с.

6. К о н о н е н к о, Е. В. Электрические машины: специальный курс / Е. В. Кононенко, Г. А. Сипайлов, К. А. Хорьков. – М.: Высш. шк., 1975. – 279 с.

Представлена кафедрой

автоматизированного электропривода

Поступила 01.07.2013