гидроэнергетика

УДК 628.112

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ СЕКТОРНОГО УСТРОЙСТВА ЦИРКУЛЯЦИОННО-РЕАГЕНТНОЙ РЕГЕНЕРАЦИИ

Асп. ШЕЙКО А. М., канд. техн. наук, доц. ИВАШЕЧКИН В. В., канд. физ.-мат. наук, доц. ВЕРЕМЕНЮК В. В.

Белорусский национальный технический университет

Разработанная математическая модель движения жидкости в закольматированной прифильтровой зоне скважины, фильтр которой разделен на нагнетательные и всасывающие сектора [1], позволяет определить давление h_1 и основной параметр кинетики растворения кольматирующих образований при циркуляционно-реагентной регенерации – скорость реагента $v(\theta, r)$ в любой точке закольматированной зоны радиусом r_0 .

Задача определения оптимальных конструктивных параметров состоит в том, чтобы при прочих равных условиях достигнуть максимума основного параметра конвективного диффузионного переноса вещества – скорости $v(\theta, r)$ в прифильтровой закольматированной зоне. Цель работы – определение оптимальных конструктивных параметров секторного устройства для равномерного и качественного увеличения проницаемости фильтра и прифильтровой зоны при циркуляционно-реагентной регенерации скважин.

При определении оптимальных конструктивных параметров секторного устройства приняты следующие допущения:

• скважина предполагается совершенной по степени и характеру вскрытия водоносного горизонта мощностью *M*;

• прифильтровая закольматированная зона скважины принимается с постоянной и однородной проницаемостью κ_1 как по глубине скважины, так и в зоне от r_c до r_0 ;

• при количестве секторов $m \ge 2$ скважинного устройства предполагается, что расход равномерно распределен между смежными секторами одного типа;

• при длине секторного устройства L_y меньше, чем мощность водоносного горизонта, M принимается таким образом, что линии тока лежат в горизонтальной плоскости при циркуляции жидкости в прифильтровой зоне. Тогда $M = L_y$.

Рис. 1. Расчетная схема скважины: 1 – фильтр скважины; 2 – секторное устройство; 3 – прифильтровая зона

Согласно принятым допущениям расчетная схема скважины с секторным устройством поинтервальной циркуляционно-реагентной регенерации будет иметь вид, как изображено на рис. 1.

При исследовании циркуляции жидкости показано [2, с. 54; 3, 4], что в результате несоблюдения баланса расхода закачки и откачки происходит нарушение симметрии гидродинамики циркуляционного потока. При превышении расхода закачки над расходом откачки часть жидкости уходит в пласт, а при превышении расхода откачки происходит отбор жидкости из пласта. Следовательно, для обеспечения максимальных размеров зоны обработки прифильтровой зоны необходимо использовать симметричную схему.

Для симметричной схемы циркуляции при использовании секторно-

го устройства для обработки скважины необходимо обеспечить: 1) равенство расходов и углов нагнетательного и всасывающего секторов, т. е. $Q_{cH} = Q_{cB}$ и $\alpha = \beta$; 2) определенное соотношение между Q_{cH} и Q_{cB} при $\alpha \neq \beta$ или соотношение между α и β при $Q_{cH} \neq Q_{cB}$. Второе условие, с точки зрения изготовления секторного устройства и технологии циркуляционной регенерации, более сложно.

В этой связи целесообразно использование в секторном циркуляционном устройстве погружного насоса, который обеспечивает равенство расходов закачки и откачки, т. е. $Q_{cH} = Q_{cB} = Q_{\mu}$, где Q_{μ} – расход, циркулирующий в прифильтровой зоне скважины.

Теоретические и экспериментальные данные показали, что в случае $Q_{cH} = Q_{cB} = Q_{\mu}$ и $\alpha = \beta$ распределение давления в прифильтровой зоне, следовательно, и скоростей носит симметричный характер относительно нагнетательного и всасывающего секторов [1]. Поэтому для дальнейшего анализа рассматривается только нагнетательный сектор с углом α .

Анализ радиальной составляющей скорости. Области изменения переменных: $r_c \le r \le r_0$ и $0 \le \theta \le \alpha$. Исследование проведем для случая

$$\begin{cases} \kappa_2 \ge \kappa_1 > 0; \\ Q_{\rm CH} = Q_{\rm CB} = Q_{\rm II}; \\ \alpha = \beta = \frac{\pi}{m}. \end{cases}$$
(1)

84

Используя операции почленного дифференцирования и интегрирования [5, с. 602], получим следующие разложения. Во-первых:

$$\Phi_r(\theta, r) = 2\sum_{n=1}^{\infty} \frac{\sin(2n-1)m\theta}{2n-1} r^{2n-1} = \operatorname{arctg}\left(\frac{2r}{1-r^2}\sin m\theta\right),$$
(2)

где

$$0 < r < 1, \ \theta \in \left[\frac{\pi}{m}\right].$$

Во-вторых:

$$\Phi_{\theta}(\theta, r) = 2\sum_{n=1}^{\infty} \frac{\cos(2n-1)m\theta}{2n-1} r^{2n-1} = \frac{1}{2} \ln\left(\frac{1+2r\cos m\theta + r^2}{1-2r\cos m\theta + r^2}\right),$$
(3)

где

$$0 < r < 1, \theta \in R$$

Свойства функций $\Phi_r(\theta, r)$ и $\Phi_{\theta}(\theta, r)$ хорошо иллюстрируют графики (рис. 2, 3).

Рис. 2. График функции $\Phi_r(\theta, r)$

Рис. 3. График функции $\Phi_{\theta}(\theta, r)$

В нагнетательном секторе радиальную составляющую скорости с учетом (3) можно найти по формуле

$$v_r(\theta, r) = \frac{2mQ_u}{\pi^2 L_v r} \stackrel{=}{\underset{r}{=}} (\theta, r);$$
(4)

где $\overline{\overline{W}}_{r}(\theta,r) = \Phi_{r}(\theta,\Delta_{r}^{m}) - \kappa_{0}\Phi_{r}(\theta,\varepsilon_{1r}^{m}) + \kappa_{0}\Phi_{r}(\theta,\varepsilon_{2r}^{m}) - \kappa_{0}^{2}\Phi_{r}(\theta,\varepsilon_{3r}^{m});$ (5)

$$\Delta_r = \frac{r_c}{r}, \, \varepsilon_{1r} = \frac{rr_c}{r_0^2}; \, \varepsilon_{2r} = \frac{r_c^3}{rr_0^2}; \varepsilon_{3r} = \frac{rr_c^3}{r_0^4}.$$

Анализ равенств (4), (5) позволяет сделать следующие выводы:

1) при каждом $r \in (r_c; r_0]$ график $v_r(\theta, r)$ имеет вид, указанный на рис. 2 (в частности, при $\theta = 0$ и $\theta = \alpha$ скорость равна 0, а при $\theta = \frac{\alpha}{2}$ – достигает своего максимального значения);

2) при каждом $\theta \in (0; \alpha)$ скорость $v_r(\theta, r)$ убывает при увеличении r от

 r_c до r_0 (так как убывают величины Δ_r , ε_{1r} , ε_{2r} , ε_{3r}); максимальное значение, равное $\frac{mQ_{\rm u}}{\pi L_{\rm v}r_c}$, она принимает на границе $r = r_c$;

3) при фиксированных значениях $\theta \in (0; \alpha)$ и $r \in (r_c; r_0]$ значения $v_r(\theta, r)$ убывают с ростом *m* (так как убывают величины Δ_r^m и ε_{ir}^m).

Анализ угловой составляющей скорости. Угловую составляющую с учетом (1) и (3) определим следующим образом:

$$v_{\theta}(\theta, r) = \frac{2mQ_{u}}{\pi^{2}L_{v}r} \overline{\overline{W}}_{\theta}(\theta, r), \qquad (6)$$

где $\overline{\overline{W}}_{\theta}(\theta, r) = -(\Phi_{\theta}(\theta, \Delta_r^{m}) + \kappa_0 \Phi_{\theta}(\theta, \varepsilon_{1r}^{m}) + \kappa_0 \Phi_{\theta}(\theta, \varepsilon_{2r}^{m}) + \kappa_0^{3} \Phi_{\theta}(\theta, \varepsilon_{3r}^{m})).$ (7)

Анализ (6) с использованием (7) и свойств функции $\Phi_{\theta}(\theta, r)$ позволяет сделать следующие выводы:

1) при каждом $r \in (r_c; r_0]$ график $v_{\theta}(\theta, r)$ имеет вид, указанный на рис. 3 (в частности, при $\theta = \frac{\alpha}{2}$ эта скорость равна 0, а при $\theta = 0$ и $\theta = \alpha$ величина $|v_{\theta}(\theta, r)|$ достигает своего максимального значения);

2) при каждом $\theta \in (0; \alpha)$ величина $|v_{\theta}(\theta, r)|$ убывает с ростом r от r_c до r_0 (так как убывают величины $\Delta_r, \varepsilon_{1r}, \varepsilon_{2r}, \varepsilon_{3r}$);

3) при фиксированных значениях $\theta \in (0; \alpha)$ и $r \in (r_c; r_0)$ величина $|v_{\theta}(\theta, r)|$ убывает с ростом *m* (так как убывают величины Δ_r^m и ε_{ir}^m).

С учетом (4) и (6) скорость в прифильтровой закольматированной зоне можно найти по формуле

$$v(\theta, r) = \sqrt{v_r^2(\theta, r) + v_\theta^2(\theta, r)} = \frac{2mQ_{\rm II}}{\pi^2 L_y r} \sqrt{\overline{\overline{W}}_r^2(\theta, r) + \overline{\overline{W}}_\theta^2(\theta, r)}, \tag{8}$$

где $\overline{\overline{W}}_{r}(\theta,r)$ и $\overline{\overline{W}}_{\theta}(\theta,r)$ задаются формулами (5) и (7) соответственно. Для избежания больших погрешностей при m > 1 должно быть $\frac{r_c}{r_0} < 0,4$, а при $m = 1 - \frac{r_c}{r_0} < 0,3$.

Окончательно можно сделать следующие выводы:

1) график скоростей $v(\theta, r)$ при фиксированном $r \in (r_c; r_0]$ симметричен относительно $\theta = \frac{\alpha}{2};$

2) при каждом $\theta \in (0; \alpha)$ величина $v(\theta, r)$ убывает с ростом r от r_c до r_0 ;

3) при каждом $\theta \in (0; \alpha)$ и $r \in (r_c; r_0]$ величина $v(\theta, r)$ убывает с увеличением m;

4. при фиксированном $r \in (r_c; r_0]$ максимальное значение $v(\theta, r)$ принимает либо при $\theta = 0$ (если *r* близко к r_c), либо при $\theta = \frac{\alpha}{2}$ (если *r* близко к r_0); mQ_r

5. на внутренней границе $r = r_c$ нагнетательного сектора $v(\theta, r) > \frac{mQ_{\mu}}{\pi L_y r_c}$.

Также представляет интерес исследование $v(\theta, r)$ при увеличении проницаемости прифильтровой зоны $\kappa_1(\kappa_1 \square \kappa_2)$ в процессе циркуляционнореагентной обработки. С этой целью при постоянных значениях Q_{μ} , r_c , r_0 , R и L_y ($Q_{\mu} = 10 \text{ м}^3/\text{ч}$, $r_c = 0,163 \text{ м}$, $r_0 = 0,463 \text{ м}$, R = 500 м, $L_y = 1 \text{ м}$) с помощью математического пакета Maple [6] была проанализирована скорость $v(\theta, r)$ при $\kappa_1 \rightarrow \kappa_2$. В результате установлено, что при $\theta = 0$ (если rблизко к r_c и r_0) скорость $v(\theta, r)$ возрастает; при $\theta = \frac{\alpha}{2}$ (если r близко к r_c) скорость $v(\theta, r)$ остается неизменной и уменьшается (если r близко к r_0). Таким образом, вначале регенерации условия промывки на контуре прифильтровой закольматированной зоны лучше в середине сектора, а при $\kappa_1 \rightarrow \kappa_2$ – на границе секторов. Поэтому на протяжении всего процесса регенерации обеспечивается равномерная очистка фильтра и прифильтровой зоны.

Основным конструктивным параметром секторного устройства также является его длина L_y , определение которой ведется из условия обеспечения фильтрационной скорости на контуре закольматированной зоны, достаточной для растворения кольматирующих отложений. При $r < r_0$ скорость $v(\theta, r)$ выше, чем на контуре закольматированной зоны, так как величина $v(\theta, r)$ монотонно убывает с ростом r от r_c до r_0 .

Перспективно использовать погружной насос при циркуляционнореагентной регенерации, который обеспечивает равенство расходов закачки и откачки. При увеличении проницаемости прифильтровой зоны напор насоса уменьшается, а расход увеличивается, что повышает фильтрационные скорости на контуре закольматированной зоны.

В качестве погружных насосов можно использовать агрегаты ЭЦВ, выпускаемые ОАО «Завод Промбурвод» г. Минска. Выпускаемые агрегаты ЭЦВ и станции управления имеют широкую гамму типоразмеров, отличаются по применению в диаметрах обсадных колонн от 100 до 300 мм, по подаче от 1 до 160 м³/ч, по напору от 15 до 300 м. Рабочие ступени погружных насосов изготовлены из полимерных материалов, широко используемых в насосостроении, имеющих стабильность к водопоглощению и высокую износостойкость. Имеется возможность устанавливать двигатели к насосам различных фирм, таких как Franklin Electric (Германия) либо ПЭДВ или ДАПВ (Республика Беларусь). Перечисленные выше характеристики двигателя и насоса полностью соответствуют условиям при проведении реагентной регенерации фильтров скважин.

Ограничением при использовании погружных насосов является условие недопущения кавитации во всасывающем секторе: $h_1^{BC} \le h_{cT} + h_v$, где $h_1^{BC} = -$

давление во всасывающем секторе; h_v – вакуумметрическая высота всасывания, определяемая в зависимости от давления насыщенных паров жидкости, скорости движения, гидравлических сопротивлений, учитывающих конструктивные особенности секторного устройства, и т. д.

Методика определения длины секторного циркуляционного устройства L_y на основе погружного насоса. Определение длины секторного циркуляционного устройства L_y на основе погружного насоса проводится в предположении, что потерями расхода в насосе можно пренебречь, и распределение общего расхода насоса происходит равномерно по нагнетательным и всасывающим смежным секторам:

$$Q_{\rm ch} = Q_{\rm cB} = Q_{\rm II} = \frac{Q_{\rm HOM}}{m\phi}, \qquad (9)$$

где $Q_{\text{ном}}$ – номинальный расход насоса, соответствующий максимальному КПД агрегата; φ – коэффициент запаса, учитывающий утечки расхода через уплотнительные перегородки. В общем случае коэффициент φ будет зависеть от типа уплотнения (пакера), закольматированного фильтра скважины и его состояния, количества секторов, расхода и др.

Расчет проводится в следующей последовательности:

 для диаметра фильтра скважины подбирается погружной насос с определенной напорной характеристикой;

2) обращаясь к [1] при заданном угле сектора $\theta = \frac{\alpha}{2}$, которому соответствует максимальная скорость движения реагента $v\left(\frac{\alpha}{2}, r_0\right)$ на контуре закольматированной зоны радиусом r_0 , определяется в первом приближении L'_y . Чтобы не уменьшать длину секторного устройства, достаточно задать скорость в середине сектора. Нет необходимости задавать скорость на границе секторов на контуре закольматированной зоны, так как в процессе регенерации ($\kappa_1 \rightarrow \kappa_2$) скорость $v(\theta, r)$ при $\theta = 0$ возрастает. Увеличение скорости на всей границе r_0 также связано с изменением напорной характеристики насоса;

3) также на основе с [1] при угле $\theta = \frac{\alpha}{2}$ и $r = r_c$, которому соответствует максимальное повышение напора в скважине, строится характеристика сектора скважины S = f(Q), где S – это повышение уровня при закачке (S > 0), т. е. $S = h_1 - h_{cr}$.

Далее при помощи напорной характеристики насоса (графической либо аппроксимированной зависимостью H = f(Q)) при L'_y определяются рас-

ход системы насос-скважина Q'_p и соответствующий $Q'_{\mu} = \frac{Q'_p}{\varphi}$;

4) рассчитываем уточненное значение L''_{y} согласно Q'_{u} ;

5) после двух-трех приближений согласно пунктам 1 и 2 определяем окончательное значение L_{v} , соответствующее Q_{u} ;

6) наконец определяются циркуляционный расход $Q_{u\kappa}$, скорость реагента после процесса регенерации продолжительностью t. Результатом очистки фильтра после реагентной декольматации является повышение проницаемости прифильтровой зоны κ_1 , и соответственно изменяется напорная характеристика насоса в сторону увеличения Q_p и уменьшения напора насоса H_p , что улучшает условия промывки фильтра и прифильтровой зоны скважины.

выводы

1. На основании принятых допущений и анализа уравнения (8) показано, что график скоростей $v(\theta, r)$ при фиксированном $r \in (r_c; r_0]$ симметричен относительно $\theta = \frac{\alpha}{2}$. При каждом $\theta \in (0; \alpha)$ величина $v(\theta, r)$ убывает с ростом r от r_c до r_0 . При каждом $\theta \in (0; \alpha)$ и $r \in (r_c; r_0]$ величина $v(\theta, r)$ убывает с увеличением m. При фиксированном $r \in (r_c; r_0]$ максимальное значение $v(\theta, r)$ принимает либо при $\theta = 0$ (если r близко к r_c), либо при $\theta = \frac{\alpha}{2}$ (если r близко к r_0). На внутренней границе $r = r_c$ нагнетательного сектора $v(\theta, r) > \frac{mQ_u}{\pi L_v r_c}$.

 $\pi L_y r_c$ 2. Оптимальное количество секторов ($\kappa_1 \square \kappa_2$) при проведении цирку-

2. Оптимальное количество секторов ($\kappa_1 \sqcup \kappa_2$) при проведении циркуляционно-реагентной регенерации ($\kappa_1 \to \kappa_2$) в случае симметричной схемы циркуляции ($Q_{cH} = Q_{cB} = Q_{\mu}$ и $\alpha = \beta$) m = 1.

3. На базе агрегата ЭЦВ приведена методика определения длины секторного устройства циркуляционно-реагентной регенерации L_y , обеспечивающая растворение кольматирующих образований в закольматированной прифильтровой зоне скважины.

ЛИТЕРАТУРА

1. Ш е й к о, А. М. Моделирование установившегося циркуляционного движения жидкости в прифильтровой зоне скважины / А. М. Шейко, В. В. Ивашечкин, Ю. В. Пулко // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2007. – № 4. – С. 77–87.

2. Тесля, В. Г. Циркуляционная регенерация скважин и пласта: дис. ... канд. техн. наук: 04.00.06 / В. Г. Тесля. – Минск, 1986. – 144 с.

3. А л е к с е е в, В. С. Опыт циркуляционной регенерации водозаборных скважин / В. С. Алексеев, Г. М. Коммунар, В. Г. Тесля // Водоснабжение и санитарная техника. – 1985. – № 9. – С. 9–10.

4. Тесля, В. Г. Технология циркуляционной регенерации скважин / В. Г. Тесля // Повышение эффективности работы водозаборов из поверхностных и подземных источников: сб. науч. тр. / МДНТП им. Ф. Э. Дзержинского. – М., 1985. – Вып. 74. – С. 114–121.

Фихтенгольц. – 4-е изд. – М.: Наука, 1966. – Т. 3.

6. Гандер, В. Решение задач в научных вычислениях с применением Maple и Mat-Lab / В. Гандер, И. Гржебичек. – Минск: Вассамедиа, 2005. – 520 с. Представлена кафедрой гидравлики

Поступила 26.06.2007