ДИНАМИЧЕСКИЕ МОДЕЛИ ВАКУУМ-ВЫПАРНЫХ УСТАНОВОК ДЛЯ МОЛОЧНОЙ ПРОМЫШЛЕННОСТИ

Канд. техн. наук, доц. АЙРАПЕТЬЯНЦ Г. М., канд. техн. наук КОЖЕВНИКОВ М. М.

Могилевский государственный университет продовольствия

В молочной промышленности молоко консервируют, вырабатывая сгущенные молочные консервы и сухие молочные продукты. Основной технологической операцией при этом является сгущение молока методом выпаривания до определенного содержания сухих веществ. Выпаривание производится в выпарных аппаратах при разрежении, что позволяет вести процесс на пониженных температурах. При пониженной температуре кипения продукта в условиях вакуума достигается значительно большая разность температур между греющим паром и кипящей жидкостью. Процесс сгущения при этом протекает более интенсивно, а съем пара с единицы поверхности нагрева намного выше по сравнению с атмосферным выпариванием.

Для автоматического регулирования температуры и глубины вакуума в вакуум-выпарных установках, используемых на предприятиях молочной промышленности, широкое распространение получили системы управления, разработанные производителями этих установок Wiegand, Alfa-Laval, Ebbot Laboratories и другие, а также Всероссийским научно-исследовательским институтом молочной промышленности (ГНУ ВНИМИ) [1–4]. Такие системы включают в себя локальные контуры регулирования температуры, вакуумметрического давления и концентрации сухих веществ в сгущенном молоке на выходе из установки [3]. В качестве устройств управления применяются цифровые ПИД-регуляторы, параметры настройки которых определяются по упрощенным динамическим моделям выпарного аппарата и конденсатора [5–7].

Необходимо отметить, что основным недостатком такой типовой линеаризованной динамической модели является то, что она не учитывает возможность изменения расхода и температуры продукта на входе в вакуум-выпарной аппарат, а также изменение вакуумметрического давления. Это приводит к тому, что при колебаниях нагрузки выпарного аппарата для поддержания необходимой температуры кипения молока на заданном уровне необходимо корректировать параметры настройки автоматических регуляторов температуры и вакуума. Корректировка параметров осуществляется технологическим персоналом методом проб и ошибок. Такой подход приводит к повышенным тепловым нагрузкам при форсировании тепловых процессов и как следствие – к неэффективному использованию теплоносителей [5, 8, 9].

В данной работе однокорпусная вакуум-выпарная установка рассмотрена как многомерный объект автоматического управления и предложены новые модификации линеаризованных динамических моделей этой установки. В отличие от известных предложенные модели позволяют учесть колебания расхода и температуры продукта на входе в вакуум-выпарной аппарат, а также изменение вакуумметрического давления. Определены возмущающие воздействия на канал регулирования температуры и получены передаточные функции по этим воздействиям. Такие передаточные функции позволяют решить задачу синтеза комбинированных систем регулирования температуры и вакуума, а также вычислить оптимальные настройки автоматических регуляторов [10, 11]. Применение таких систем в практике регулирования позволит повысить эффективность использования теплоносителей в вакуум-выпарной установке [8, 12–14].

Рис. 1. Схема однокорпусной вакуум-выпарной установки

Упрощенная схема однокорпусной вакуум-выпарной установки [15] приведена на рис. 1. Установка состоит из выпарного аппарата 1, в который подается молоко с температурой не ниже 75-80 °С. Молоко поступает в широкую трубу греющей камеры 2, в пространство под нижней трубной решеткой, где моментально закипает и устремляется в кипятильные трубы. Парожидкостная смесь из кипятильных труб поступает в сборник над верхней трубной решеткой и направляется с большой скоростью по верхней циркуляционной трубе 3 в пароотделитель (сепаратор) 4, приобретая вращательное движение. Благодаря возникающей при этом центробежной силе происходит разделение капелек жидкости и вторичного пара. Молоко по нижней циркуляционной трубе 5 возвращается в греющую камеру, а соковый (вторичный) пар отводится в конденсатор смешения 7. Часть вторичного пара через термокомпрессорный блок б используют в качестве греющего пара. Воздух и другие неконденсируемые газы удаляются из вакуум-выпарной установки пароэжекторным агрегатом 8. В выпарной установке протекают следующие основные процессы [16]: конденсация пара в греющей камере, передача теплоты от пара через поверхность нагрева и слои загрязнений к кипящему молоку, кипение молока, отделение паров чистого растворителя от жидкости и сепарация пара.

Представим греющую камеру как совокупность следующих элементов: пара в камере, пленки конденсата на поверхности нагрева, неконденси-

рующихся газов, конденсата, накапливающегося в греющей камере, металла корпуса и изоляция [16, 17]. Для построения модели греющей камеры примем следующие допущения: объем пара в греющей камере равен объему этой камеры, скорости изменения температур пара и пленки конденсата равны, стенка греющей камеры и изоляция рассматриваются как сосредоточенные емкости ввиду их небольшой аккумулирующей способности, в переходном процессе скорости изменения температуры пара и средней температуры металла корпуса равны, теплоемкости металла и изоляции не зависят от температуры, температура изоляции $\theta_{\mu} = (\theta_{\mu} + \theta_{o})/2$, где θ_{M} – температура металла корпуса; θ_{o} – температура окружающей среды. С учетом этих допущений уравнения материального и теплового балансов греющей камеры могут быть записаны в следующем виде:

$$p(V\rho_{\pi} + V_{\kappa}\rho_{\kappa}) = D_1 - D_{\kappa} - D_1'; \qquad (1)$$

$$p(V\rho_{\Pi}u_{\Pi} + V_{\kappa}\rho_{\kappa}c_{\kappa}t_{\kappa}) + (c_{MT}G_{MT} + 0.5c_{\mu}G_{\mu})pt_{\Pi} = (D_{1} - D_{1}')i_{1} - D_{\kappa}i_{\kappa} - Q_{1} - Q',$$
(2)

где $p = d/d\tau$ – оператор дифференцирования по времени; τ – время; V – объем греющей камеры; ρ_{π} – плотность греющего пара; V_{κ} – объем пленки конденсата; ρ_{κ} – плотность конденсата; D_1 – расход греющего пара; D_{κ} – расход конденсата; D'_1 – расход пара на оттяжку неконденсирующихся газов; u_{π} – внутренняя энергия пара в греющей камере; c_{κ} – теплоемкость конденсата; t_{κ} – температура конденсата; $c_{m\tau}$ – теплоемкость металла корпуса греющей камеры; $G_{m\tau}$ – масса металла корпуса греющей камеры; t_{π} – температура пара в греющей камере; i_1 – энтальпия греющей камеры; i_1 – энтальпия греющей камеры; Q_1 – то же, передаваемый поверхности нагрева. Величина Q_1 определяется в соответствии с уравнением теплопередачи

$$Q_{\rm l} = F_{\rm l}'(t_{\rm n} - t_{\rm c}) / (1/\alpha_{\rm l} + \delta_{\rm c}/2\lambda_{\rm c}), \qquad (3)$$

где F'_1 – площадь поверхности нагрева со стороны конденсирующегося пара; α_1 – коэффициент теплоотдачи при конденсации; δ_c – толщина стенки поверхности нагрева; λ_c – теплопроводность стенки поверхности нагрева; t_c – температура поверхности нагрева.

Рассматривая совместно выражения (1)-(3), получим следующее уравнение, описывающее динамику изменения температуры пара в греющей камере:

$$a_1 p t_{\rm n} = -a_2 t_{\rm n} + a_3 t_{\rm c} + a_4 \left(D_1 - D_1' \right) + a_5, \tag{4}$$

где

$$\begin{aligned} a_{1} = V\left(\rho_{\pi} \partial u_{\pi} / \partial t_{\pi} + \left(u_{\pi} - i_{\kappa}\right) \partial \rho_{\pi} / \partial t_{\pi}\right) + V_{\kappa} \rho_{\kappa} \left(c_{\kappa} + t_{\kappa} \partial c_{\kappa} / \partial t_{\pi}\right) + c_{MT} G_{MT} + 0.5 c_{\mu} G_{\mu}; \\ a_{4} = i_{1} - i_{\kappa}; \quad a_{2} = a_{3} = F_{1}^{\prime} / \left(1 / \alpha_{1} \left(t_{\pi}, t_{c}\right) + \delta_{c} / 2\lambda_{c}\right); \quad a_{5} = -Q^{\prime}. \end{aligned}$$

Динамика изменения температуры поверхности нагрева *t*_c может быть описана следующей формулой [16]:

$$c_1 p t_{\rm c} = -c_2 t_{\rm c} + a_2 t_{\rm m} + c_3 \theta, \tag{5}$$

где $c_1 = c_{\rm MT}G_3$, G_3 — масса металла, охватывающего парожидкостное пространство; $c_2 = a_2 + c_3$; $c_3 = F_1''/(1/\alpha_2(t_c, \theta, b) + \delta_c/2\lambda_c + R_u(\overline{\tau}))$; θ — температура кипения молока; F_1'' — площадь поверхности нагрева со стороны кипящего молока; α_2 — коэффициент теплоотдачи при кипении; b — концентрация сухих веществ в молоке; $R_u(\overline{\tau})$ — термическое сопротивление накипи; $\overline{\tau}$ — продолжительность работы выпарного аппарата после очистки поверхности нагрева.

Использование (5) предполагает выполнение следующих условий: трубы испарителя имеют одинаковые геометрические размеры и выполнены из материала с одинаковыми теплофизическими свойствами, тепловой поток вдоль оси трубы отсутствует, все трубы испарителя воспринимают одинаковые количества теплоты, поверхность нагрева рассматривается как сосредоточенная емкость [16].

Выполним линеаризацию уравнений (4), (5) и перейдем от абсолютных значений переменных состояния к их приращениям в безразмерной форме. Безразмерные приращения переменных состояния зададим путем деления отклонений этих переменных на их значения в равновесном состоянии и применим к ним преобразование Лапласа: $t_{n}^{*} = L(\Delta t_{n}/t_{n0})$; $t_{c}^{*} = L(\Delta t_{c}/t_{c0})$; $D_{1}^{*} = L(\Delta D_{1}/D_{10})$; $D_{1}'^{*} = L(\Delta D_{1}'/D_{10}')$; $Q'^{*} = L(\Delta Q'/Q_{0}')$; $\theta^{*} = L(\Delta \theta/\theta_{0})$; $b^{*} =$ $= L(\Delta b/b_{0})$; $R_{\mu}^{*} = L(\Delta R_{\mu}/R_{\mu 0})$ (здесь и далее символ L обозначает преобразование Лапласа, Δ – отклонение, а дополнительный индекс 0 имеют значения соответствующих переменных в равновесном состоянии).

Тогда при нулевых начальных условиях линеаризованная модель динамики греющей камеры может быть представлена в операторной форме:

$$t_{\pi}^{*} = W_{11}(s)t_{c}^{*} + W_{12}(s)D_{1}^{*} + W_{13}(s)D_{1}^{*} + W_{14}(s)Q^{*};$$
(6)

$$t_{\rm c}^* = W_{21}(s)t_{\rm n}^* + W_{22}(s)\theta^* + W_{23}(s)b^* + W_{24}(s)R_{\rm n}^*, \tag{7}$$

где $W_{ij}(s) = k_{ij}/T_i s + 1$ – передаточные функции греющей камеры по каналам нанесения внешних воздействий; k_{ij} – коэффициенты передачи греющей камеры; T_i – постоянные времени греющей камеры; i = 1, 2; j = 1:4;s – комплексная переменная.

Коэффициенты передачи и постоянные времени определяются по следующим формулам:

$$k_{11} = -l_{12}t_{c0}/l_{11}t_{n0}; \quad k_{12} = -l_{13}D_{10}/l_{11}t_{n0}; \quad k_{13} = -l_{14}D'_{10}/l_{11}t_{n0};$$

$$k_{14} = -l_{15}Q'_0/l_{11}t_{n0}; \quad T_1 = -1/l_{11};$$

$$- \partial \left(a_3t_c + a_4(D_1 - D'_1) + a_5 - a_2t_n \right) | \quad t_1 = -\partial \left(a_3t_c - a_2t_n \right) |$$

$$l_{11} = \frac{\partial}{\partial t_{\pi}} \left(\frac{a_3 t_c + a_4 (D_1 - D_1') + a_5 - a_2 t_{\pi}}{a_1} \right)_0; \quad l_{12} = \frac{\partial}{\partial t_c} \left(\frac{a_3 t_c - a_2 t_{\pi}}{a_1} \right)_0;$$

$$\begin{split} l_{13} &= \frac{\partial}{\partial D_{1}} \left(\frac{a_{4} D_{1}}{a_{1}} \right) \Big|_{0}; \quad l_{14} = \frac{\partial}{\partial D_{1}'} \left(\frac{-a_{4} D_{1}'}{a_{1}} \right) \Big|_{0}; \quad l_{15} = \frac{\partial}{\partial Q'} \left(\frac{a_{5}}{a_{1}} \right) \Big|_{0}; \\ k_{21} &= -l_{22} t_{n0} / l_{21} t_{c0}; \quad k_{22} = -l_{23} \Theta_{0} / l_{21} t_{c0}; \quad k_{23} = -l_{24} b_{0} / l_{21} t_{c0}; \\ k_{24} &= -l_{25} R_{\mu0} / l_{21} t_{c0}; \quad T_{2} = -1 / l_{21}; \\ l_{21} &= \frac{\partial}{\partial t_{c}} \left(\frac{a_{2} t_{n} + c_{3} \Theta - c_{2} t_{c}}{c_{1}} \right) \Big|_{0}; \quad l_{22} = \frac{\partial}{\partial t_{n}} \left(\frac{a_{2} t_{n} - c_{2} t_{c}}{c_{1}} \right) \Big|_{0}; \quad l_{23} = \frac{\partial}{\partial \Theta} \left(\frac{c_{3} \Theta - c_{2} t_{c}}{c_{1}} \right) \Big|_{0}; \\ l_{24} &= \frac{\partial}{\partial b} \left(\frac{c_{3} \Theta - c_{2} t_{c}}{c_{1}} \right) \Big|_{0}; \quad l_{25} = \frac{\partial}{\partial R_{\mu}} \left(\frac{c_{3} \Theta - c_{2} t_{c}}{c_{1}} \right) \Big|_{0}, \end{split}$$

где символом $|_0$ обозначена подстановка в формулы вектора (t_{n0} , t_{c0} , D_{10} , D'_{10} , Q'_0 , θ_0 , b_0 , $R_{\mu 0}$) после вычисления производных.

Для построения математической модели парожидкостного пространства примем следующие допущения: температура кипения молока в греющей камере θ является сосредоточенным параметром и равна температуре сокового пара *t*, масса пара в парожидкостном пространстве значительно меньше массы молока ($G_{\pi} \ll G$), возмущения по расходу молока не превышают ±30 %, объем молока в аппарате $V = V'_0 + \eta h$, где $V'_0 - объем молока, огра$ $ниченный плоскостью, от которой отсчитывается уровень; <math>\eta$ – площадь поперечного сечения аппарата; h – уровень молока в аппарате.

Представим парожидкостное пространство как совокупность следующих элементов [16, 17]: молока, пара под зеркалом испарения, сокового пара, металла корпуса и исходя из этого запишем уравнения материального и теплового балансов:

$$(\rho - \rho_{\Pi}) pV + (V_0 - V) (\partial \rho_{\Pi} / \partial t) pt = S_{M} - S_{CM} - W;$$
(8)

$$p(V\rho c\theta + (V_0 - V)\rho_{\Pi}u + c_{MT}\theta G'_{MT}) = Q_2 + S_M c_0 \theta_{M0} - S_{cM} c\theta - Wi - Q'', \quad (9)$$

где ρ – плотность молока в аппарате; V_0 – объем парожидкостного пространства; $S_{\rm M}$ – расход молока на входе в выпарной аппарат; $S_{\rm CM}$ – то же сгущенного молока на выходе из выпарного аппарата; W – то же сокового пара; i – энтальпия сокового пара; c – теплоемкость молока в аппарате; u – внутренняя энергия сокового пара; $G'_{\rm MT}$ – масса металла, охватывающего парожидкостное пространство; c_0 – теплоемкость молока на входе в аппарат; $\theta_{\rm M0}$ – температура молока на входе в аппарат; Q'' – суммарные потери теплоты в окружающую среду через корпус парожидкостного пространства; Q_2 – количественная характеристика теплоты от поверхности теплообмена. Величина Q_2 определяется из уравнения теплопередачи

$$Q_2 = c_3(t_c - \theta). \tag{10}$$

57

Рассматривая совместно (8)–(10), а также пренебрегая в первом приближении изменением количества молока при фазовых переходах и изменением его внутренней энергии при подводе и отводе массы, получим следующую систему уравнений, описывающую динамику изменения температуры молока и уровня в аппарате:

$$d_1 p \theta = -d_2 \theta + c_3 t_c - d_3 W + d_4; \tag{11}$$

$$e_1 ph = S_{\rm M} - S_{\rm cm} - W, \qquad (12)$$

где $d_1 = V\rho c + (V_0 - V)\rho_{\Pi} \partial u/\partial t + u(V_0 - V)\partial\rho_{\Pi}/\partial t + c_{MT}G'_{MT}; \quad d_2 = c_3 + S_{CM}c;$ $d_3 = i; \ d_4 = S_{M}c_0\theta_{M0} - Q''; \ e_1 = (\rho - \rho_{\Pi})\eta.$

Выполним линеаризацию уравнения (11) и перейдем от абсолютных значений переменных состояния к их приращениям в безразмерной форме. Тогда при нулевых начальных условиях получим:

$$\theta^* = W_{31}(s)t_c^* + W_{32}(s)b^* + W_{33}(s)R_{\mu}^* + W_{34}(s)S_{cm}^* + W_{35}(s)S_{\mu}^* + W_{36}(s)\theta_{\mu0}^*; (13)$$
$$h^* = W_{41}(s)S_{\mu}^* - W_{42}(s)S_{cm}^* - W_{43}(s)W^*, (14)$$

где $W_{3i}(s) = k_{3i}/T_3 s + 1$; $W_{4j}(s) = k_{4j}/T_4 s$ – передаточные функции парожидкостного пространства по каналам нанесения внешних воздействий (i = 1:6; j = 1:3); k_{3i} , k_{4j} – коэффициенты передачи парожидкостного пространства; T_3 , T_4 – постоянные времени парожидкостного пространства.

Коэффициенты передачи и постоянные времени определяются по следующим формулам:

$$\begin{split} k_{31} &= -l_{32}t_{\rm c0}/l_{31}\Theta_0; \ k_{32} = -l_{33}b_0/l_{31}\Theta_0; \ k_{33} = -l_{34}R_{\rm H0}/l_{31}\Theta_0; \ k_{34} = -l_{35}S_{\rm cM0}/l_{31}\Theta_0; \\ k_{35} &= -l_{36}S_{\rm M0}/l_{31}\Theta_0; \ k_{36} = -l_{37}\Theta_{\rm M00}/l_{31}\Theta_0; \ T_3 = -1/l_{31}; \ k_{41} = 1; \ k_{42} = S_{\rm cM0}/S_{\rm M0}; \\ k_{43} &= W_0/S_{\rm M0}; \ T_4 = e_1h_0/S_{\rm M0}; \\ l_{31} &= \frac{\partial}{\partial \Theta} \left(\frac{c_3t_{\rm c} - d_3W + d_4 - d_2\Theta}{d_1} \right) \bigg|_0; \ l_{32} = \frac{\partial}{\partial t_{\rm c}} \left(\frac{c_3t_{\rm c} - d_2\Theta}{d_1} \right) \bigg|_0; \\ l_{33} &= \frac{\partial}{\partial b} \left(\frac{c_3t_{\rm c} - d_3W + d_4 - d_2\Theta}{d_1} \right) \bigg|_0; \ l_{34} = \frac{\partial}{\partial R_{\rm H}} \left(\frac{c_3t_{\rm c} - d_2\Theta}{d_1} \right) \bigg|_0; \\ l_{35} &= \frac{\partial}{\partial S_{\rm cM}} \left(\frac{-d_2\Theta}{d_1} \right) \bigg|_0; \ l_{36} = \frac{\partial}{\partial S_{\rm M}} \left(\frac{d_4}{d_1} \right) \bigg|_0; \ l_{37} = \frac{\partial}{\partial \Theta_{\rm M0}} \left(\frac{d_4}{d_1} \right) \bigg|_0, \end{split}$$

где символом $|_0$ обозначена подстановка в формулы вектора (θ_0 , t_{c0} , b_0 , $R_{\mu 0}$, $S_{\mu 0}$, $\theta_{\mu 00}$) после вычисления производных.

Для построения математической модели, описывающей динамику изменения концентрации сухих веществ в молоке, примем следующие допущения: плотность молока при колебаниях температуры и концентрации принимается постоянной, концентрация сухих веществ в молоке является сосредоточенным параметром и равна концентрации на выходе из аппарата, т. е. предполагается, что поступающее в аппарат молоко мгновенно перемешивается с остальной жидкостью, уносом жидкости с паром пренебрегаем. С учетом этих допущений уравнение материального баланса сухих веществ может быть записано в следующем виде:

$$\left(G_0' + h\rho\eta\right)\frac{db}{d\tau} + b\rho\eta\frac{dh}{d\tau} = b_{\rm M}S_{\rm M} - bS_{\rm cm},\tag{15}$$

где G'_0 – масса молока в объеме, ограниченном плоскостью, от которой отсчитывается уровень; $b_{\rm M}$ – начальная концентрация сухих веществ в молоке.

Рассматривая совместно выражения (15), (12) и учитывая, что $\rho >> \rho_n$, получим следующее уравнение, описывающее динамику изменения концентрации

$$f_1 \frac{db}{d\tau} = b_{\rm M} S_{\rm M} - b \left(S_{\rm cM} - W \right), \tag{16}$$

где $f_1 = G'_0 + h \rho \eta$.

Выполним линеаризацию уравнения (16) и перейдем от абсолютных значений переменных состояния к их приращениям в безразмерной форме. Тогда при нулевых начальных условиях линеаризованная модель динамики изменения концентрации сухих веществ может быть представлена в операторной форме

$$b^* = W_{51}(s)S_{\rm M}^* + W_{52}(s)b_{\rm M}^* + W_{53}(s)h^* + W_{54}(s)S_{\rm CM}^* + W_{55}(s)W^*, \qquad (17)$$

где $W_{5i}(s) = k_{5i}/T_5 s + 1$ – передаточные функции парожидкостного пространства по каналам нанесения внешних воздействий (*i* = 1:5); k_{5i} – коэффициенты передачи; T_5 – постоянная времени; $b_{M}^* = L(\Delta b_{M}/b_{M0})$. Коэффициенты передачи и постоянная времени определяются по следующим формулам:

$$k_{51} = -l_{42}S_{M0}/l_{41}b_0; \ k_{52} = -l_{43}b_{M0}/l_{41}b_0; \ k_{53} = -l_{44}h_0/l_{41}b_0;$$

$$k_{54} = -l_{45}S_{cM0}/l_{41}b_0; \ k_{55} = -l_{46}W_0/l_{41}b_0; \ T_5 = -1/l_{41};$$

$$\begin{split} l_{41} = & \frac{\partial}{\partial b} \left(\frac{b_{\rm M} S_{\rm M} - b S_{\rm cM} + b W}{f_1} \right) \bigg|_0; \quad l_{42} = \frac{\partial}{\partial S_{\rm M}} \left(\frac{b_{\rm M} S_{\rm M}}{f_1} \right) \bigg|_0; \quad l_{43} = \frac{\partial}{\partial b_{\rm M}} \left(\frac{b_{\rm M} S_{\rm M}}{f_1} \right) \bigg|_0; \\ l_{44} = & \frac{\partial}{\partial h} \left(\frac{b_{\rm M} S_{\rm M} - b S_{\rm cM} + b W}{f_1} \right) \bigg|_0; \quad l_{45} = \frac{\partial}{\partial S_{\rm cM}} \left(\frac{b W - b S_{\rm cM}}{f_1} \right) \bigg|_0; \\ l_{46} = & \frac{\partial}{\partial W} \left(\frac{b W - b S_{\rm cM}}{f_1} \right) \bigg|_0. \end{split}$$

Для построения математической модели, описывающей динамику канала вакуумметрического давления, представим конденсатор смешения 7 (рис. 1) совокупностью следующих элементов: паровоздушного пространства, жидкости на полках и в струях, металла корпуса и полок [16, 17]. Примем следующие допущения: температуры пара, металла и давление являются сосредоточенными параметрами, пар в конденсаторе – сухой насыщенный, температура пара и температура неконденсирующихся газов равны, состав неконденсирующихся газов близок к составу воздуха, физические параметры жидкости и металла не зависят от температуры и давления, давление в установке равно сумме парциальных давлений пара и воздуха $q = q_{\rm n} + q_{\rm b}$, в конденсатор поступает соковый пар с расходом W. Обозначим остальные переменные состояния конденсатора смешения следующим образом: $t_{\rm k}''$ – температура сокового пара в конденсаторе; $t_{\rm k}$ – то же охлаждающей воды на входе в конденсатор; $t_{\rm k1}$ – то же воды на выходе из конденсатора; $D_{\rm m}$ – расход воды на входе в конденсатор; $D_{\rm m1}$ – то же на выходе из конденсатора; $G_{\rm b}$ – то же на входе в конденсатор; $G_{\rm m}$ – то же на выходе из конденсатора; $G_{\rm b}$ – потери теплоты в окружающую среду.

Тогда с учетом принятых допущений динамику изменения давления *q* можно описать следующим уравнением [16]:

$$g_1 pq = g_2 t''_{\kappa} + g_3 t_{\kappa 1} + g_4 t_{\kappa} + g_5 + g_6, \tag{18}$$

где g_i – нелинейные функции от переменных состояния конденсатора смешения t''_{κ} , D_{κ} , $D_{\kappa 1}$, D_{κ} , $D_{\kappa 1}$, W, ε , Q_{π} , конструктивных параметров и теплофизических свойств теплоносителей, i = 1:6. Выражения, определяющие вид функций g_i , приведены в [16]. С их учетом выполним линеаризацию уравнения (18) и перейдем от абсолютных значений переменных состояния к их приращениям в безразмерной форме. Определим безразмерные приращения переменных состояния и применим к ним преобразование Лапласа: $t''_{\kappa} = L(\Delta t''_{\kappa}/t''_{\kappa 0}); D^*_{\kappa} = L(\Delta D_{\kappa}/D_{\kappa 0}); D^*_{\kappa 1} = L(\Delta D_{\kappa 1}/D_{\kappa 10}); D^*_{\rm B} = L(\Delta D_{\rm B}/D_{\rm B0});$ $D^*_{\rm B1} = L(\Delta D_{\rm B1}/D_{\rm B10}); \varepsilon^* = L(\Delta \varepsilon/\varepsilon_0); Q^*_{\pi} = L(\Delta Q_{\pi}/Q_{\pi 0}).$ Тогда при нулевых начальных условиях линеаризованная модель динамики изменения вакуумметрического давления может быть представлена в операторной форме

$$q^{*} = W_{61}(s)t_{\kappa}^{\prime\prime*} + W_{62}(s)D_{\kappa}^{*} + W_{63}(s)D_{\kappa1}^{*} + W_{64}(s)D_{B}^{*} + W_{65}(s)D_{B1}^{*} + W_{66}(s)\varepsilon^{*} + W_{67}(s)W^{*} + W_{68}(s)Q_{11}^{*},$$
(19)

где $W_{6i}(s) = k_{6i}/s$ – передаточные функции парожидкостного пространства по каналам нанесения внешних воздействий (*i* = 1:8); k_{6i} – коэффициенты передачи, определяемые по следующим формулам:

$$k_{61} = l_{51} t_{k0}'' / q_0; \ k_{62} = l_{52} D_{k0} / q_0; \ k_{63} = l_{53} D_{k10} / q_0; \ k_{64} = l_{54} D_{b0} / q_0; \ k_{65} = l_{55} D_{b10} / q_0;$$
$$k_{66} = l_{56} \varepsilon_0 / q_0; \ k_{67} = l_{57} W_0 / q_0; \ k_{68} = l_{58} Q_{n0} / q_0;$$

$$\begin{split} l_{51} &= \frac{\partial}{\partial t_{\kappa}''} \left(\frac{g_2 t_{\kappa}'' + g_3 t_{\kappa 1} + g_4 t_{\kappa} + g_5 + g_6}{g_1} \right) |_0; \\ l_{52} &= \frac{\partial}{\partial D_{\kappa}} \left(\frac{g_2 t_{\kappa}'' + g_3 t_{\kappa 1} + g_4 t_{\kappa} + g_5 + g_6}{g_1} \right) |_0; \end{split}$$

60

$$\begin{split} l_{53} &= \frac{\partial}{\partial D_{\mathrm{gl}}} \left(\frac{g_2 t_{\mathrm{gl}}'' + g_3 t_{\mathrm{gl}} + g_5 + g_6}{g_1} \right) \bigg|_0; \ l_{54} = \frac{\partial}{\partial D_{\mathrm{gl}}} \left(\frac{g_2 t_{\mathrm{gl}}'' + g_5 + g_6}{g_1} \right) \bigg|_0; \\ l_{55} &= \frac{\partial}{\partial D_{\mathrm{Bl}}} \left(\frac{g_2 t_{\mathrm{gl}}'' + g_5 + g_6}{g_1} \right) \bigg|_0; \ l_{56} = \frac{\partial}{\partial \varepsilon} \left(\frac{g_2 t_{\mathrm{gl}}'' + g_3 t_{\mathrm{gl}} + g_4 t_{\mathrm{gl}} + g_5 + g_6}{g_1} \right) \bigg|_0; \\ l_{57} &= \frac{\partial}{\partial W} \left(\frac{g_3 t_{\mathrm{gl}} + g_6}{g_1} \right) \bigg|_0; \ l_{58} = \frac{\partial}{\partial Q_{\mathrm{gl}}} \left(\frac{g_6}{g_1} \right) \bigg|_0, \end{split}$$

где символом $|_0$ обозначена подстановка в формулы вектора ($t''_{\kappa 0}$, $D_{\kappa 0}$, $D_{\kappa 10}$, $D_{\rm B0}$, $D_{\rm B10}$, W_0 , ε_0 , $Q_{\rm n0}$) после вычисления производных.

Таким образом, полученная линеаризованная система уравнений (6), (7), (13), (14), (17), (19) описывает динамику вакуум-выпарной установки по управляющим и возмущающим воздействиям. Структурная схема модели, построенная на основе этой системы, приведена на рис. 2.

Рис. 2. Структурная схема линеаризованной модели вакуум-выпарной установки

Выходными переменными модели являются: температура молока в выпарном аппарате θ , уровень в аппарате h, концентрация сухих веществ в молоке b и глубина вакуума q. В качестве управляющих воздействий можно рассматривать расходы: греющего пара D_1 , молока S_{M} , сгущенного молока S_{CM} и воды на конденсацию сокового пара D_{*} .

выводы

Анализ вакуум-выпарной установки как объекта управления на основе предложенной линеаризованной динамической модели с целью повышения эффективности использования теплоносителей позволяет сделать следующие выводы:

1) улучшение качества регулирования концентрации сухих веществ *b* по основному каналу «расход сгущенного молока S_{cm} – концентрация *b*» может быть достигнуто путем введения дополнительных корректирующих контуров по каналам «расход молока S_{m} – концентрация *b*» и «расход сокового пара – концентрация *b*»;

2) улучшение качества регулирования температуры молока θ по основному каналу «расход греющего пара D_1 – температура θ » может быть достигнуто путем введения дополнительных корректирующих контуров по каналам «расход молока $S_{\rm M}$ – температура θ » и «расход сгущенного молока $S_{\rm CM}$ – температура θ »;

3) улучшение качества регулирования вакуумметрического давления q по основному каналу «расход охлаждающей воды D_{π} – давление q» может быть достигнуто путем введения дополнительных корректирующих контуров по каналам «температура сокового пара в конденсаторе t''_{κ} – давление q», «расход откачиваемого кислорода $D_{\rm B1}$ – давление q».

Предложенные модели применимы для синтеза систем управления вакуум-выпарными установками химических производств.

ЛИТЕРАТУРА

1. Брусиловский, А. Я. Вайнберг. – М.: Колос, 1993. – 363 с.

2. Хомяков, А. П. Усовершенствование выпарных установок «Виганд» для сгущения молока / А. П. Хомяков, Л. К. Трофимов, В. Д. Харитонов // Молочная промышленность. – 1999. – № 2. – С. 17–19.

3. Брусиловский, Л. П. Новое в автоматизации технологических процессов сгущения и сушки молока и молочных продуктов / Л. П. Брусиловский, А. Я. Вайнберг, В. П. Молотков. – М.: ЦНИИТЭИмясомолпром, 1983. – 56 с.

4. Х о м я к о в, А. П. Отечественное оборудование для сгущения молока и молочных продуктов / А. П. Хомяков, Л. К. Трофимов // Молочная промышленность. – 1999. – № 1. – С. 22–23.

5. О п ы т эксплуатации выпарного и сушильного оборудования на Лианозовском комбинате / Ю. И. Меркулов [и др.] // Молочная промышленность. – 1993. – № 1. – С. 21–24.

6. Т р у м п и, А. Б. Изучение динамических характеристик работы двухкорпусной вакуум-выпарной установки / А. Б. Трумпи // Молочная промышленность. – 1977. – № 3. – С. 17–18.

7. Б р у с и л о в с к и й, Л. П. Приборы технологического контроля в молочной промышленности / Л. П. Брусиловский, А. Я. Вайнберг. – М.: Агропромиздат, 1990. – 288 с.

8. А й р а п е т ь я н ц, Г. М. Объекты регулирования / Г. М. Айрапетьянц, И. Д. Иванова // Техника и технология пищевых производств: материалы V междунар. науч.-техн. конф. – Могилев, 2005. – С. 85–89.

9. Брусиловский, Л. П. Научно-технические решения для создания автоматизированных биотехнологических комплексов цельномолочного производства / Л. П. Брусиловский, В. Д. Харитонов. – М.: ГНУ ВНИМИ, 1999. – 57 с.

10. К а ф а р о в, В. В. Методы кибернетики в химии и химической технологии / В. В. Кафаров. – М.: Химия, 1985. – 448 с. 11. С о к о л о в, В. А. Автоматизация технологических процессов в пищевой промышленности. – М.: Агропромиздат, 1991. – 445 с.

12. Б р у с и л о в с к и й, Л. П. Синтез структуры интегрированной автоматизированной системы управления / Л. П. Брусиловский, В. Д. Харитонов // Молочная промышленность. – 1996. – № 3. – С. 4–7.

13. Брусиловский, Л. П. Автоматизированная система для учета и контроля сырья / Л. П. Брусиловский, А. С. Левин // Молочная промышленность. – 2000. – № 7. – С. 37–38.

14. С и с т е м а автоматического регулирования температуры нагрева: а. с. 1392157 СССР, МКИ2, D 01H13/28 G 05D23/19/ Г. М. Айрапетьянц, А. И. Васильев, Г. К. Ковалев, Г. А. Корсунский; Могилевский филиал научно-производственного объединения «Химавтоматика». – № 4049884; заявл. 17.03.86; опубл. 30.04.88 // Открытия. Изобретения. – 1988. – № 16. – 4 с.

15. С т р а х о в, В. В. Вакуум-выпарные установки молочной промышленности и их эксплуатация / В. В. Страхов. – М.: Пищевая промышленность, 1970. – 144 с.

16. Таубман. – М.: Химия, 1982. – 328 с.

17. К а ф а р о в, В. В. Математическое моделирование основных процессов химических производств / В. В. Кафаров, М. Б. Глебов. – М.: Высш. шк., 1991. – 400 с.

Представлена кафедрой автоматизации технологических процессов и производств

Поступила 03.03.2009

УДК 62-503

ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ РАБОТЫ КАМЕРНОЙ ПЕЧИ

Докт. техн. наук, проф. КОВАЛЕВСКИЙ В. Б., инж. РАДЖУХ М.

Белорусский национальный технический университет

При функционировании нагревательных устройств возникает задача выбора наивыгоднейших условий их работы [1]. Применительно к камерным печам решены задачи: минимизации теплоты, использованной на нагрев [2]; минимизации величины окалины [3, 4].

Предполагается, что в печи нагреваются «тонкие» в теплотехническом смысле тела и двусторонние ограничения на температуру дымовых газов отсутствуют. Однако важным для практики является учет двусторонних ограничений на температуру дымовых газов. Дальнейшее изложение и посвящено решению такого рода проблемы.

Постановка задачи. Рассмотрим следующую задачу оптимизации:

$$\frac{dx}{dt} = f(x, u, t); \tag{1}$$

$$g_1(x(0)) = 0; \quad g_2(x(T)) = 0;$$
 (2)

$$\int_{0}^{T} F(x,u,t)dt \to \min_{u \in U}.$$
(3)

63