ЛИТЕРАТУРА

1. Г е р а с и м о в и ч, Д. А. Математическое моделирование электромагнитных характеристик уединенных бесконечно длинных стержневых заземлителей при стекании переменного тока промышленной частоты / Д. А. Герасимович, Е. А. Дерюгина // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2010. – № 4. – С. 5–13.

2. Б у р г с д о р ф, В. В. Заземляющие устройства электроустановок / В. В. Бургсдорф, А. И. Якобс. – М.: Энергоатомиздат, 1987. – 400 с.

3. Л о б о д а, М. Международные стандарты по качеству заземляющих электродов / М. Лобода, Р. Марциняк // Вторая Российская конференция по заземляющим устройствам: сб. докл. Новосибирск, 22–25 марта 2005 г. / Сибирская энергетическая академия; редкол.: Ю. В. Целебровский [и др.]. – Новосибирск, 2005. – С. 25–35.

4. Т у р о в с к и й, Я. Техническая электродинамика / Я. Туровский; пер. с польск. – М.: Энергия, 1974. – 488 с.

5. К а р я к и н, Р. Н. Входное сопротивление протяженного вертикального заземлителя в многослойной земле / Р. Н. Карякин, В. К. Добрынин // Электричество. – 1975. – № 8. – С. 18–21.

Представлена кафедрой электрических станций

Поступила 16.09.2010

УДК 656.132.6:621.33

ТЯГОВЫЙ ЭЛЕКТРОПРИВОД С БЕЗДАТЧИКОВОЙ СИСТЕМОЙ ВЕКТОРНОГО УПРАВЛЕНИЯ

Канд. техн. наук, доц. ОПЕЙКО О. Ф.

Белорусский национальный технический университет

Инженеры ПТАШНИК А. И., ХИЛЬМОН В. И.

УП «Белкоммунмаш»

Для повышения качества городского электротранспорта необходимо улучшение эксплуатационных характеристик и динамических свойств тягового электропривода. Важное требование к тяговому электроприводу – формирование режима постоянства мощности. Такой режим присущ приводу постоянного тока последовательного возбуждения, который широко применяется в городском электротранспорте. Асинхронный тяговый электродвигатель дает очевидные преимущества в простоте эксплуатации по сравнению с приводом постоянного тока. При частотном двухзонном регулировании скорости можно сформировать благоприятный режим, близкий к постоянству мощности как при скалярном, так и при векторном управлении. Предпочтение отдается векторному управлению, которое позволяет формировать благоприятные для работы транспорта динамические характеристики, а также создает условия для экономии электроэнергии. Система векторного управления асинхронным двигателем (АД) может быть построена с применением датчика скорости и без него. Наличие датчика скорости удорожает систему и снижает надежность тягового привода. Поэтому актуальным является создание бездатчикового тягового электропривода. Векторное управление АД [1–5] допускает методы синтеза, основанные на функциях Ляпунова [6–8]. Для построения высококачественных систем векторного управления большое значение имеет оценивание параметров в процессе функционирования. В [9] метод наименьших квадратов применен для идентификации параметров АД. В [8, 10–15] для оценивания недоступных для измерения переменных используются методы адаптивного управления электроприводом. Проблема синтеза высокоэффективной системы бездатчикового векторного управления остается актуальной.

Цель данной работы – формирование структуры и анализ методом математического моделирования бездатчиковой системы векторного управления, предназначенной для тягового электропривода.

Система управления тяговым электроприводом должна обеспечивать постоянство мощности при изменении скорости как вниз, так и вверх от номинальной. Регулирование выше номинальной скорости выполняют ослаблением магнитного поля двигателя. Уровень потребляемой из сети мощности ограничен и зависит от напряжения сети, а поскольку управление скоростью выполняется путем задания момента, то при задании момента должны учитываться как фактическое напряжение в сети, так и ограничение момента допустимым значением.

Для формирования векторного управления необходимы величины модуля и фазы потокосцепления ротора, которые, как и скорость, должны быть оценены косвенно, на основании измеряемых переменных двигателя. Для этого обычно применяют модель АД в неподвижной системе координат (a, b) [4–8]. Измеряемыми переменными являются токи фазных обмоток статора.

Функциональная схема системы представлена на рис. 1.

Рис. 1. Функциональная схема системы

Система содержит силовую часть (преобразователь АИН и двигатель М), датчики напряжения ДН и тока ДТ и микроконтроллер МК, формирующий сигналы управления программным способом. Регуляторы скорости P_1 , P_2 формируют сигналы задания Ψ^* , M^* на входы регуляторов P_3 , P_4 потоко-

сцепления и момента соответственно. Модуль ПК выполняет координатные, а ПФ – фазные преобразования векторного управления. Микроконтроллер содержит аппаратный ШИМ, формирующий трехфазную последовательность модулированных по ширине синусоидальных сигналов управления преобразователем. Настраиваемая модель НМ (фильтр Калмана) выполняет оценивание (идентификацию) величин потокосцепления ротора Ψ и скорости ω .

Представим электромагнитные процессы АД в неподвижной системе координат (*a*, *b*) уравнениями [6–9]:

$$\begin{split} \dot{\Psi}_{a} &= -\alpha \Psi_{a} - \overline{\omega} \Psi_{b} + \alpha L_{12} i_{a}; \\ \dot{\Psi}_{b} &= -\alpha \Psi_{b} + \overline{\omega} \Psi_{a} + \alpha L_{12} i_{b}; \\ \frac{di_{a}}{dt} &= -R_{1} K_{4} i_{a} + K_{4} u_{a} - \beta \dot{\Psi}_{a}; \\ \frac{di_{b}}{dt} &= -R_{1} K_{4} i_{b} + K_{4} u_{b} - \beta \dot{\Psi}_{b}. \end{split}$$
(1)

Здесь $\alpha = R_2/L_2$; $K_4 = 1/\sigma L_1$; $\beta = k_2 K_4$; i_a , i_b – ток статора; Ψ_a , Ψ_b – потокосцепление ротора. Если ввести обозначения $x^T = [i_a, \Psi_a, i_b, \Psi_b]$ для переменных состояния, $u_{ab}^T = [u_a, u_b]$ – для напряжения статора, $y^T = [i_a, i_b]$, $\alpha_1 = R_1/\sigma L_1$, то систему (1) можно записать следующим образом:

$$\dot{x} = Ax + Bu_{ab};$$

$$y = Cx.$$
(2)

Здесь

$$A = \begin{bmatrix} -\alpha_1 - k_2 k_1 \alpha / \sigma & k_2 K_4 \alpha & 0 & k_2 K_4 \varpi \\ \alpha L_{12} & -\alpha & 0 & -\varpi \\ 0 & -k_2 K_4 \varpi & -\alpha_1 - k_1 k_2 \alpha / \sigma & k_2 K_4 \alpha \\ 0 & \varpi & \alpha L_{12} & -\alpha \end{bmatrix};$$
$$B = \begin{bmatrix} K_4 & 0 \\ 0 & 0 \\ 0 & K_4 \\ 0 & 0 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

В уравнениях величина $\varpi = z\omega$, где z – число пар полюсов; ω – угловая скорость ротора, может рассматриваться как переменный параметр. Тогда уравнения (1) и (2) линейны относительно переменных x и позволяют построить фильтр Калмана [10]:

$$\dot{x} = Ax + Bu_{ab} + K(i_{ab} - Cx);$$

$$y = Cx.$$
(3)

Здесь и далее переменные x, y принадлежат фильтру Калмана. Переменные $u_{ab} = (u_a, u_b), i_{ab} = (i_a, i_b)$ принадлежат объекту управления, тяго-

вому электроприводу, представленному в неподвижной системе координат (a, b), причем $u_{ab} = (u_a, u_b)$ – вектор сигнала управления; $i_{ab} = (i_a, i_b)$ – вектор токов статора, полученный от датчиков фазных токов в результате фазного преобразования. Матрица K коэффициентов усиления определяется в зависимости от критерия качества, которому должен удовлетворять фильтр Калмана. В [10] для этого предлагается использовать минимизацию интегральной квадратичной оценки идентификации переменных. Выражения (3) определяют структуру фильтра. На рис. 1 фильтр Калмана (3) представлен звеном HM.

Матрица A содержит неизвестные величины – это угловая скорость ω ротора и изменяющиеся в процессе функционирования параметры электродвигателя, в первую очередь $\alpha = R_1/\sigma L_1$; $\alpha_1 = R_2/L_2$. Для обеспечения заданной точности оценивания Ψ и ω желательна автоматическая идентификация параметра $\alpha = R_1/\sigma L_1$ в структуре фильтра Калмана. Для идентификации параметров АД на практике применяются разнообразные методы в [15]. Метод наименьших квадратов, основанный на измерениях переменных в разные моменты времени в процессе функционирования, применяется в [9]. В [14] использован метод вычисления параметров, основанный на использовании соотношений переменных в двигателе. Альтернативой этим методам может служить самонастройка (адаптация) на основании метода скоростного градиента [16, 17]. Применение методов самонастройки дает преимущество в отношении робастности системы.

Критерий качества адаптации представим в виде

времени в силу системы уравнений (3) принимает вид

$$Q = \Delta i^2 + \lambda \Delta \Psi^2. \tag{4}$$

Здесь $\Delta i^2 = (i_{ab} - y)^2$; $\Delta \Psi^2 = (\Psi_{ab} - \hat{\Psi}_{ab})^2$; Ψ – оцениваемое значение потокосцепления ротора; λ – постоянный коэффициент. Производная Q по

$$W = \dot{Q} = \left(\frac{\partial Q}{\partial x}\right)^T \dot{x} = \left(\frac{\partial Q}{\partial x}\right)^T \left(Ax + Bu_{ab} + K(i_{ab} - Cx)\right).$$
(5)

Здесь

$$\left(\frac{\partial Q}{\partial x}\right)^{T} = 2\left(-(i_{a}-x_{1}),-\lambda\Delta\Psi_{a},-(i_{b}-x_{3}),-\lambda\Delta\Psi_{b}\right).$$

Скоростной градиент по отношению к параметрам α , $\overline{\omega}$ имеет вид:

$$\nabla_{\alpha}W = \left(\frac{\partial Q}{\partial x}\right)^{T} \frac{\partial}{\partial \alpha} \left(Ax + Bu_{ab} + K\left(i_{ab} - Cx\right)\right); \tag{6}$$
$$\nabla_{\overline{\omega}}W = \left(\frac{\partial Q}{\partial x}\right)^{T} \frac{\partial}{\partial \overline{\omega}} \left(Ax + Bu_{ab} + K\left(i_{ab} - Cx\right)\right).$$

Адаптация (автоматическая настройка параметра α) должна происходить в соответствии с [16, 17]:

$$\dot{\alpha} = -\gamma_1 \nabla_{\alpha} W; \tag{7}$$
$$\dot{\overline{\omega}} = -\gamma_2 \nabla_{\overline{\omega}} W.$$

40

Здесь γ_1 , γ_2 – коэффициенты, выбираемые в зависимости от желаемой интенсивности процесса самонастройки.

Математическое имитационное моделирование системы бездатчикового управления тяговым электроприводом выполнено для асинхронного тягового электродвигателя мощностью 150 кВт, 1500 об/мин, 460 В, 50 Гц в соответствии с функциональной схемой, показанной на рис. 1 при учете синусоидальной трехфазной ШИМ с частотой 1 КГц. Моделирование выполнено для различных значений сопротивлений обмоток двигателя в пределах от 0,5 до 1,5 от расчетных значений, что соответствует температурным изменениям [14]. Увеличение сопротивлений не оказывает существенного влияния на динамику модели, а при уменьшении сопротивлений динамика несколько ухудшается, что видно из рис. 2 и 3.

Рис. 2. Процесс разгона при расчетных параметрах

Результаты математического имитационного моделирования системы представлены на рис. 2 и 3. На рис. 2 показан процесс разгона при расчетных значениях параметров двигателя. На рис. 2а представлены истинное ω и оцениваемое $\hat{\omega}$ значения скорости при разгоне, на рисунке 26 – заданное Ψ^* , истинное Ψ и оцениваемое $\hat{\Psi}$ значения потокосцепления. На рис. 2в изображены электромагнитный момент и скорость при разгоне, а на рис. 2г – процесс оценивания параметра α .

На рис. За–г показаны те же кривые процесса разгона при значениях сопротивлений обмоток ротора и статора, вдвое меньших чем расчетные. Анализ переходных процессов показывает, что погрешность оценивания параметра α приводит к неточному оцениванию потокосцепления ротора Ψ.

Последнее отражается на качестве формирования электромагнитного момента M (рис. 2в, 3в), который при разгоне имеет колебания. Указанные погрешности находятся в допустимых пределах, что подтверждается приемлемым качеством идентификации и регулирования скорости на всем интервале разгона.

Рис. 3. Процесс разгона при α, α₁ вдвое меньших, чем расчетные

вывод

Качество переходных процессов в бездатчиковой системе векторного управления асинхронным электродвигателем в значительной степени определяется точностью оценивания переменных состояния системы и параметров фильтром Калмана.

Адаптация параметров фильтра Калмана способствует стабильности динамических показателей системы.

ЛИТЕРАТУРА

1. B l a s c h k e, F. Das Verfahren der Feldorientierung zur Regelung der Asynchronmaschine / F. Blaschke // Siemens-Forsch und Entwicklungsber. – 1972. – No. 1. – S. 184–193.

2. С и с т е м ы подчиненного регулирования электроприводов переменного тока с вентильными преобразователями / О. В. Слежановский [и др.]. – М.: Энергоатомиздат, 1983. – 256 с.

3. Ф и р а г о, Б. И. Учебно-методическое пособие к курсовому проектированию по теории электропривода / Б. И. Фираго. – Минск: БНТУ, 2005. – 126 с.

4. Ф и р а г о, Б. И. Теория электропривода: учеб. пособие / Б. И. Фираго, Л. Б. Павлячик. – Минск: ЗАО «Техноперспектива», 2004. – 527 с.

5. Ф и р а г о, Б. И. Регулируемые электроприводы переменного тока / Б. И. Фираго, Л. Б. Павлячик. – Минск: ЗАО «Техноперспектива», 2004. – 527 с.

6. S t e p h a n, J. Real Time Estimation of the Parameters and Flux of Induction Motors / J. Stephan, M. Bodson, J. Chiasson // IEEE Trans. On Industry Applications. Vol. IA-30, 1994. – No. 3. – P. 745–759.

7. E l b u l u k, M. Design and Implementation of a Closed-Loop Observer and Adaptive Controller for Induction Motor Drives / M. Elbuluk, N. Langovsky, M. D. Kankam // IEEE Trans. On Industry Applications. Vol. IA-34, 1998. – No. 3. – P. 435–442.

8. M a r i n o, R. Global Adaptive Output Feedback Control of Induction Motors with Uncertain Rotor Resistance / R. Marino, S. Peresada, P. Tomei // IEEE Trans. On Automatical Control. Vol. AC-44, 1999. – No. 5. – P. 745–759.

9. A N o n l i n e a r Least-Squares Approach for Identification of the Induction Motor Parameters / J. Kaiyu Wang [et al.] // IEEE Trans. On Autom. Control, Vol. AC-50, 2005. – No. 10. – P. 1622–1628.

10. S e n s o r l e s s Control with Kalman Filter on TMS320 Fixed-Point DSP. Literatur Number: BPRA057, Texas Instruments Europe July 1997.

11. И н ь к о в, Ю. М. Системы управления для электроприводов с асинхронными тяговыми двигателями / Ю. М. Иньков, Г. А. Федяева, В. П. Феоктистов // Электротехника. – 2009. – № 4. – С. 8–12.

12. П а н к р а т о в, В. В. Синтез адаптивных алгоритмов вычисления скорости асинхронного электропривода на основе второго метода Ляпунова / В. В. Панкратов, Д. А. Котин // Электричество. – 2007. – № 8. – С. 48–53.

13. В и н о г р а д о в, А. Бездатчиковый электропривод подъемно-транспортных механизмов / А. Виноградов, А. Сибирцев, С. Журавлев // Силовая электроника. – 2007. – № 1. – С. 46–52.

14. В олков, А. В. Идентификация потокосцепления ротора и скорости асинхронного двигателя с учетом изменений его активных сопротивлений / А. В. Волков, Ю. С. Скалько // Электротехника. – 2009. – № 11. – С. 2–12.

15. A R e v i e w of RFO Induction Motor Parameter Estimation Techniques / A. Hamid [et al.] // IEEE Trans. On Energy Conversion. – 2003. – Vol. 18, No. 2. – P. 271–283.

16. Фомин, В. Н. Адаптивное управление динамическими системами / В. Н. Фомин, А. Л. Фрадков, В. А. Якубович. – М.: Наука, 1981.

17. Ф р а д к о в, А. Л. Адаптивное управление в сложных системах / А. Л. Фрадков. – М.: Наука, 1990.

Представлена кафедрой электропривода и автоматизации промышленных установок

и технологических комплексов

Поступила 02.02.2010