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Реферат. Прогнозирование спроса на тепловую энергию необходимо для достижения оп-
тимального управления энергопотреблением здания. Целью данной статьи является выяв-
ление важнейших факторов, влияющих на точность прогнозирования теплопотребления 
зданий с применением нейронных сетей, что соответствует национальной стратегии разви-
тия искусственного интеллекта РФ. В статье исследуется зависимость точности моделиро-
вания от различных комбинаций параметров окружающей среды, а также от применения 
разных функций активации нейронных сетей, широко используемых в практике создания 
систем искусственного интеллекта. Продемонстрировано, что модели машинного обучения, 
основанные на большом количестве данных о тепловом потреблении, имеют большие воз-
можности в прогнозировании реальных моделей и тенденций потребления, а значение 
средней абсолютной процентной ошибки лучшей модели прогнозирования сопоставимо  
с величиной максимального предела допускаемой относительной погрешности измерений 
тепловой энергии измерительным каналом теплосчетчика. На основе данных, полученных  
с помощью разработанной системы дистанционного мониторинга индивидуальных тепло-
вых пунктов зданий, продемонстрировано сравнение действительных значений теплового 
потребления и величин теплового потребления, полученных с использованием модели про-
гнозирования. Экономия энергии, теплоносителя и прочего на объекте не может быть изме-
рена напрямую, поскольку она представляет собой отсутствие потребления. Поэтому уни-
версальный подход с использованием искусственного интеллекта для технически обосно-
ванного и экономически целесообразного метода прогнозирования результатов применения 
энергосберегающих решений для сравнения измеренного энергопотребления до и после 
внедрения энергоэффективного мероприятия может позволить повысить эффективность 
принятия решений в сфере сбережения энергетических ресурсов. 
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Abstract. Heat demand forecasting is necessary to achieve optimal management of building ener-
gy consumption. The purpose of this article is to identify the most important factors influencing 
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the accuracy of forecasting heat consumption of buildings using neural networks, which is in line 
with the national strategy for the development of artificial intelligence of the Russian Federation. 
The article studies the dependence of modeling accuracy on various combinations of environmen-
tal parameters, as well as on the application of different activation functions of neural networks, 
widely used in the practice of creating artificial intelligence systems. It is demonstrated that ma-
chine learning models based on a large number of data on thermal consumption have great possi-
bilities in predicting real patterns and trends of consumption, and the value of the average absolute 
percentage error of the best prediction model is comparable to the value of the maximum limit  
of the tolerable relative error of thermal energy measurements by the measuring channel of  
the heat meter. On the basis of data obtained using the developed system of remote monitoring  
of individual heating points of buildings, a comparison of actual values of heat consumption  
and values of heat consumption obtained using the prediction model was demonstrated. Savings  
of energy, heat carrier and other things at the object cannot be measured directly, because the sa- 
vings represent the absence of consumption, so a universal approach using artificial intelligence 
for a technically sound and economically feasible method of predicting the results of the applica-
tion of energy-saving solutions to compare the measured energy consumption before and after  
the implementation of energy-efficient measures may allow to improve the efficiency of decision-
making in the field of saving energy resources 
 

Keywords: building energy efficiency, heat supply, building heating, neural network, artificial 
intelligence, individual heat supply unit, computer modeling, heat consumption monitoring 
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Введение 
 

В 2019 г. принята Национальная стратегия развития искусственного ин-
теллекта, в которой определяются цели и основные задачи искусственного 
интеллекта в Российской Федерации, а также меры, направленные на его 
использование в целях обеспечения национальных интересов и реализации 
стратегических приоритетов, в том числе в области научно-технологиче-
ского развития. Интерес к исследованиям на тему искусственного интел-
лекта привел к появлению огромного количества их вариаций, включая 
искусственный интеллект, построенный на нейросетевых алгоритмах. В то 
же время количество публикаций по тематике применения нейронных се-
тей в системе мониторинга и управления энергоэффективностью отаплива-
емых зданий весьма ограничено. Одной из задач управления энергоэффек-
тивностью является разработка инструментария для оценки эффективности 
внедрения энергосберегающих решений с использованием моделей про-
гнозирования энергопотребления. 

Обзор особенностей построения моделей прогнозирования теплового 
спроса зданий представлен в [1]. Модели машинного обучения, основан-
ные на большом количестве данных о нагрузке, продемонстрировали свои 
большие возможности в прогнозировании реальных моделей и тенденций 
потребления. Показано, что тепловые нагрузки, температура наружного 
воздуха и часовой индекс имеют наибольшее влияние и наряду с дополни-
тельным использованием данных по скорости ветра и индексу дня, что 
улучшает среднеквадратичное отклонение, их следует в первую очередь 
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учитывать в моделях прогнозирования теплового потребления. И, напро-
тив, включение всех доступных параметров не приводит к достижению 
более высокой точности прогноза. Представленная в [2] методология сопо-
ставления точности методов, используемых для количественной оценки 
неопределенности в определении общей экономии энергии, может быть 
использована для оценки неопределенности в прогнозах экономии, возни-
кающей из-за ошибки модели. Показано, что широко используемые стан-
дартные методы, как правило, недооценивают неопределенность, причем 
эта тенденция сильнее для часовых моделей, чем для дневных из-за более 
сильной автокорреляции в остатках модели в часовом масштабе времени.  
В работе [3] сопоставлены два основных подхода к рассмотрению неопре-
деленностей прогнозов управления моделями зданий. Показана суще-
ственная разница в ошибках прогноза для зданий с разными характеристи-
ками ограждающих конструкций: для плохо изолированных зданий и для 
зданий с высокой степенью изоляции. 

Точное краткосрочное прогнозирование спроса на тепловую энергию 
необходимо для достижения оптимального управления энергопотреблени-
ем здания, экономии затрат, экологической устойчивости и ответственного 
потребления энергии. Кроме того, краткосрочное прогнозирование тепло-
вой энергии способствует достижению нулевого энергопотребления зданий 
в холодном климате. В [4] оценивались шесть распространенных алгорит-
мов глубокого обучения для прогнозирования энергетической нагрузки, 
включая одиночные и гибридные модели. Надежное и точное прогнозиро-
вание нагрузки на отопление может предоставить исчерпывающую ин-
формацию для мониторинга и управления системами отопления, вентиля-
ции и кондиционирования воздуха в зданиях, что позволяет эффективно 
снизить неопределенность в отношении потребности в энергии. В [5] про-
демонстрирован потенциал для прогнозирования нагрузки на отопление  
с учетом комплексного выбора физических переменных, влияющих на по-
часовые динамические изменения сезонной нагрузки здания. Результа- 
ты [6] подчеркивают важность детального анализа предварительной обра-
ботки данных в моделях обучения для точного прогнозирования спроса на  
потребление энергии в реальных условиях. Модели машинного обучения 
могут улучшить производительность систем теплоснабжения, точно про-
гнозируя потребление энергии зданием и использование нагрузки [7].  
В [8] представлен прогноз потребления тепловой энергии на основе реаль-
ных данных интеллектуального учета теплоты с учетом возможностей 
нейронных сетей. Точное прогнозирование энергопотребления здания име-
ет решающее значение для рационального проектирования энергосистем 
зданий [9]. В [10] обсуждаются технические решения, способствующие 
интеграции электрических и тепловых сетей, а в [11] показано наличие по-
тенциала экономии энергии за счет оптимизации параметров теплопотреб-
ляющих систем для различных географических регионов.  

Известно, что принцип работы нейросети – механизма обработки ин-
формации сводится к тому, что активации в одном слое приводят к актива-



М. В. Колосов, А. Ю. Липовка, Ю. Л. Липовка 

80                                     Нейронная сеть прогнозирования теплового потребления здания 
 

 

 

циям в следующем слое, и, наконец, какой-то шаблон активаций в финаль-
ном слое – это выбор нейросети. Вместе с тем алгоритм обучения нейрон-
ных сетей недостаточно освещен в работах. 

Целью статьи является выявление важнейших факторов, влияющих на 
точность прогнозирования теплопотребления зданий с применением 
нейронных сетей и активного дистанционного компьютерного мониторин-
га, оценивающего и, возможно, в будущем корректирующего механизма 
управления энергоэффективностью зданий. 

 

Основная часть 
 

Существует множество потенциальных интеллектуальных задач, кото-
рые разбиваются на слои абстракции (пример – разбор речи, распознавание 
рукописей), но все они сводятся к получению сырого исходного материала 
и последующему выделению отдельных параметров, которые комбиниру-
ются для образования абстрактных мыслей и т. д. В нашем случае в каче-
стве исходного материала дистанционно на сервер поступают значения 
тепловых (температур в характерных точках индивидуального теплового 
пункта здания) и гидравлических (давлений, расходов) параметров, кото-
рые впоследствии преобразуются в управленческие действия регулирую-
щих клапанов. 

Рассмотрим основные функции активации, широко применяемые в 
практике создания систем искусственного интеллекта. Активация в нейро-
нах  число от 0 до 1, выражающее, насколько система уверена, что вход-
ная информация содержит соответствующую информацию об оптимизиру-
емом параметре энергоэффективности здания. 

Переход активаций a  от одного слоя, допустим, исходного – входяще- 

го (0)a  к следующему  1a  представляется в виде выражения 
 

    1 0 ,a   Wa b  
 

где W – матрица объединенных весов, каждая строка которой описывает 
соединения между нейронами одного слоя с конкретным нейроном сле- 
дующего слоя; a – вектор-столбец, объединяющий все активации слоя;  
b – вектор-столбец сдвигов (смещений).  

В качестве сжимающей функции  может быть использована сигмоид-

ная функция сжатия,    1/ 1 ,xx e    или функция выпрямленного ли-

нейного модуля    max 0, .ReLU a a  Значения весов W и смещений b 

необходимо подобрать. 
Обучающаяся нейронная сеть, которая по сути является функцией,  

в нашем случае на входе принимает 11 значений от теплорегистратора 
(температуры и расходы воды) и 13 значений погодных факторов (темпе-
ратура воздуха, скорость ветра, облачность и т. д.), блочно рондомизиро-
ванных и взаимно синхронизированных по времени. 
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Разница между фактическим выходом и выходом нейронной сети оце-
нивается с помощью функции стоимости нейронной сети C, которая равна 
сумме квадратов различий между промежуточной выходной активацией и 
желаемым значением, а градиент функции C  указывает направление 
наибольшего спуска, – в каком направлении следует сделать шаг, чтобы 
уменьшить C быстрее всего, а длина этого вектора-градиента позволяет 
выявить наиболее крутой склон. То есть алгоритм минимизации функ- 
ции C состоит в том, чтобы вычислить направление ,C  затем многократ-
но повторить небольшие шаги вниз. Алгоритм эффективного расчета ,C  
являющийся основой обучения нейронной сети, называется обратным рас-
пространением ошибки. Этот процесс многократного подталкивания вход-
ных данных функции на величину, кратную отрицательному ,C  есть гра-
диентный спуск. 

Учитывая, что в задаче управления энергопотреблением некоторые 
входные параметры теплосчетчика (к примеру, температура воды в пода-
ющем трубопроводе) и сами являются функциями климатологических па-
раметров, сложность вычисления функции стоимости кратно возрастает. 

Основной алгоритм обучения нашей нейронной сети – это исчисление 
обратного распространения ошибки. Необходимо оценить степень чув-
ствительности функции стоимости C одного обучающего примера сети  
с нейроном последнего слоя с индексом L, равной квадрату разности по-

следней активации  La  и конкретного значения функции y,   2

,LC a y   

где        1L L L La w a b   от корректировки переменных: веса  Lw  и смеще-

ния   ,Lb  т. е. как они приведут к наиболее эффективному уменьшению 

функции затрат. Преобразуем  La  посредством специальной нелиней- 
ной функции  – сигмовидной, или ReLU, тогда после присвоения спе- 

циального имени  Lz  взвешенной сумме      1L L Lw a b   получим а(L) = 

=          1 .L L L Lw a b z      

Небольшие изменения веса, влияющие на стоимость, для конкретного 
обучающего примера k: 

 

 

 

 

 

    ;
L L

k k
L L L L

C Cz a

w w z a

  


   
 

 

 
  0 2 ;L

L

C
a y

a


 


 

 

 
  ;

L
L

L

a
z

z


 


 

 

 
 1 .

L
L

L

z
a

w





 

 

Функция полной стоимости включает в себя усреднение всех затрат по 
множеству различных обучающих примеров k, следовательно, и ее произ-
водную необходимо усреднить по всем обучающим примерам n  
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Компонент вектора градиента состоит из частых производных функции 
стоимости по всем весам и смещениям 
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Исходные данные для моделирования искусственного интеллекта полу-
чены в результате пятилетнего мониторинга теплогидравлических режи-
мов тепловых пунктов более чем 250 зданий [12]. Для демонстрации рабо-
ты данного метода рассмотрена модель теплопотребления одного из этих 
зданий. В качестве данных для прогнозирования приняты данные отопи-
тельной системы здания г. Красноярска с 13.12.2017 по 25.02.2024. 

Следующим шагом является выбор подмножества из исходного, чтобы 
только наиболее важные входные признаки были включены при разработке 
модели. В избранном подмножестве приняты пять параметров: среднесу-
точная температура наружного воздуха, °C, относительная влажность, %, 
скорость ветра, км/ч, облачность, %, и солнечная энергия, МДж/(м²·сут.). 
Рассмотрим, как полученные данные связаны друг с другом. Для этого 
воспользуемся математической мерой корреляции. Математической мерой 
корреляции двух случайных величин служит коэффициент корреляции 
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Полученные значения коэффициентов корреляции параметров модели 
прогнозирования энергопотребления представлены на рис. 1. 

Из рис. 1 видно, что наибольшее абсолютное значение коэффициентов 
корреляции наблюдается между тепловым потреблением здания, среднесу-
точной температурой наружного воздуха, а также значением солнечной 
энергии. 

Диаграмма рассеяния, представленная на рис. 2, в удобном виде пока-
зывает распределение элементов множества в плоскости и может проде-
монстрировать зависимость выбранных параметров друг от друга. Особое 
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внимание следует уделить парам с наибольшим значением коэффициента 
корреляции. 

 
 

Рис. 1. Значения коэффициентов корреляции параметров модели  
прогнозирования энергопотребления 

 

Fig. 1. Correlation coefficient values for the energy consumption  
forecasting model parameters 

 
После того как были определены исходные данные, можем перейти  

к построению нейронной сети. Нейронная сеть для прогнозирования теп-
лового потребления здания была построена с тремя внутренними слоями  
с количеством нейронов, равным 100 для каждого слоя, с применением 
функции активации ReLU для каждого слоя. В качестве входных парамет-
ров использовались различные комбинации исходных данных. На рис. 3 
представлен пример схемы построения нейронной сети прогнозирования 
теплового потребления здания с тремя входными параметрами. 

Для определения лучшей комбинации входных параметров было созда-
но 15 нейронных сетей с различными комбинациями входных параметров, 
для которых рассчитаны несколько ключевых показателей оценки их эф-
фективности.  

Показатели оценки эффективности необходимы для количественного 
отражения того, насколько точно разработанные модели могут прогнози-
ровать потребленную тепловую энергию.  
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Тепловое потребление здания, ГКал/сут. 
 

  
 

Рис. 2. Диаграмма рассеяния параметров модели прогнозирования энергопотребления 
 

Fig. 2. Scatter diagram of the parameters of the energy consumption forecasting model 
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Рис. 3. Пример схемы построения нейронной сети прогнозирования  
теплового потребления здания 

 

Fig. 3. Example of a neural network for predicting  
heat consumption of a building 
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Поскольку трудно найти один показатель, который бы доминировал над 
другими по всем параметрам, обычно в типичных задачах статистической 
регрессии используются несколько показателей для получения более пол-
ного представления об эффективности прогноза. Для оценки нейрон- 
ной сети использованы наиболее часто применяемые показатели оценки 
эффективности: корень из среднеквадратичной ошибки (RMSE), средняя 
абсолютная процентная ошибка (MAPE), средняя абсолютная ошибка 
(MAE), коэффициент вариации среднеквадратичной ошибки (CV-RMSE)  
и коэффициент детерминации (R2). 

Корень из среднеквадратичной ошибки измеряет среднюю разни- 
цу между значениями, спрогнозированными моделью прогнозирования,  
и фактическими значениями: 
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Чем ниже значение корня средней квадратичной ошибки, тем лучше 
модель прогнозирования. Корень средней квадратичной ошибки имеет 
преимущество в том, что представляет величину ошибки в единицах изме-
рения прогнозируемого столбца, что упрощает процесс интерпретации. 

Средняя абсолютная процентная ошибка: 
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Средняя абсолютная ошибка – среднее абсолютных разностей между 
целевым значением и значением, предсказанным моделью: 
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В отличие от среднеквадратических ошибок, где используется квадрат 
разности, средняя абсолютная ошибка является линейной оценкой, поэто-
му вес разностей одинаков независимо от диапазона. 

Коэффициент вариации среднеквадратичной ошибки 
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Коэффициент детерминации – это доля дисперсии зависимой перемен-
ной, объясняемая рассматриваемой моделью зависимости:  

 
 
 

  

   

2

2
2

1 .
1

Ly x a
R

y x y x
n


 

  
 



 
 

 



М. В. Колосов, А. Ю. Липовка, Ю. Л. Липовка 

86                                     Нейронная сеть прогнозирования теплового потребления здания 
 

 

 

При сборе данных с интеллектуальных тепловых счетчиков необходимо 
всегда учитывать возможность утечки конфиденциальной информации, а 
также проблем, связанных с сетями передачи данных. Данные, полученные 
с помощью реальных измерительных устройств, всегда подвержены шуму, 
выбросам, отсутствующим значениям и дублирующим значениям, поэтому 
перед использованием полученных данных необходимо произвести про-
цесс очистки. Процесс очистки данных выполняется для того, чтобы сна-
чала обнаружить, а затем интерполировать выявленные пропущенные и 
аномальные образцы. 

Разделение набора данных необходимо для беспристрастной оценки 
эффективности прогнозирования. Достаточно случайным образом разде-
лить набор данных на тренировочный набор данных, который применяется 
для обучения модели, а также на набор тестов, который необходим для 
объективной оценки окончательной модели. Разделение произведено слу-
чайным образом в отношении два к одному в пользу тренировочного набо-
ра данных. 

Результаты моделирования сведены в табл. 1, в которой параметры 
представляют соответственно: среднесуточную температуру наружного 
воздуха T, °C, относительную влажность H, %, скорость ветра W, км/ч, об-
лачность C, % и солнечную энергию S, МДж/(м²·сут.). В каждой строке 
цветом выделены первичные независимые параметры, по которым прово-
дилось моделирование. 

Таблица 1 
Сравнение точности различных моделей 

 

Comparison of accuracy of various models 
 

№ п/п T H W C S RMSE MAPE MAE CV-RMSE R2 

1 0,578 18,6 0,419 17,45 0,915 

2 0,579 17,4 0,404 17,49 0,915 

3 0,572 18,9 0,402 17,28 0,917 

4 0,571 18,6 0,402 17,27 0,917 

5 0,643 19,0 0,438 19,44 0,894 

6 0,601 19,4 0,425 18,18 0,908 

7 0,576 18,1 0,403 17,40 0,915 

8 0,594 17,1 0,407 17,96 0,910 

9 0,647 21,0 0,441 19,54 0,893 

10 0,599 19,8 0,421 18,09 0,909 

11 0,681 21,7 0,469 20,58 0,882 

12 0,671 20,4 0,463 20,28 0,885 

13 0,690 20,9 0,497 20,84 0,879 

14 0,746 24,0 0,506 22,53 0,858 

15 0,748 24,6 0,518 22,61 0,857 

 
На рис. 4 изображены тренировочный, тестовый и предсказанный набо-

ры данных, служащие для демонстрации работы нейронной сети прогнози-
рования теплового потребления здания. 
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Рис. 4. Пример результатов предсказания нейронной сети  
прогнозирования теплового потребления здания 

 

Fig. 4. Example of neural network prediction results  
for forecasting building heat consumption 

 

 
Из рис. 4 видно, что модель прогнозирования учитывает нелинейность 

в характере распределения данных. Сравнение оригинальных значений и 
значений, полученных с использованием модели предсказания, на всем 
временном интервале, показано на рис. 5. 

 

 

Рис. 5. Сравнение оригинальных значений и значений, полученных с использованием  
модели предсказания, на всем временном интервале 

 

Fig. 5. Comparison of original values and values obtained using the prediction  
model over the entire time interval 

 

При рассмотрении системы отопления следует отметить, что период  
ее работы значительно меньше целого года, а значит, модель должна  
это отражать. Поэтому в качестве исходных данных для модели отберем 
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только те данные, которые соответствуют периоду отопления здания, и по-
вторим процесс. 

Полученные значения коэффициентов корреляции параметров модели 
прогнозирования энергопотребления за отопительный период представле-
ны на рис. 6. 

 
Рис. 6. Значения коэффициентов корреляции параметров модели  
прогнозирования энергопотребления за отопительный период 

 

Fig. 6. Values of the correlation coefficients of the parameters of the energy consumption  
forecasting model for the heating period 

 
Рис. 6 показывает, что наибольшее абсолютное значение коэффициента 

корреляции наблюдается между тепловым потреблением здания и средне-
суточной температурой наружного воздуха. Значения коэффициентов кор-
реляции между тепловым потреблением здания и остальными параметрами 
резко возросли, что говорит о том, что в отопительный период изменение 
данных параметров оказывает более сильное влияние на тепловое потреб-
ление здания. 

Построим диаграмму рассеяния для данных за отопительный период, 
представленную на рис. 7. 

Как можно видеть из рис. 7, значения относительной влажности скоро-
сти ветра и солнечной радиации сходятся к постоянному значению при 
уменьшении температуры. 
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Тепловое потребление здания, ГКал/сут. 

 

  
 
 

Рис. 7. Диаграмма рассеяния параметров модели прогнозирования энергопотребления  
за отопительный период 

 

Fig. 7. Scatter diagram of the parameters of the energy consumption forecasting model  
for the heating period 

 
Проведем моделирование на новой выборке данных, представляю- 

щих исключительно отопительный период. В данной модели сети также 
использовались три промежуточных слоя, но в отличие от предыдущего 
случая в двух первых слоях вместо функции активации ReLU использова-
лась функция активации “sigmoid”. Результаты моделирования сведены  
в табл. 2.  

Для демонстрации работы нейронной сети прогнозирования теплового 
потребления здания изобразим тренировочный, тестовый и предсказанный 
наборы данных для отопительного периода, как показано на рис. 8. 

МДж/(м2сут.) 
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Таблица 2 
Сравнение точности различных моделей 

 

Comparison of accuracy of various models 
 

№ п/п T H W C S RMSE MAPE MAE CV-RMSE R2 

1           0,535 8,69 0,411 11,33 0,851 

2           0,513 8,52 0,400 10,87 0,863 

3           0,505 8,30 0,387 10,70 0,867 

4           0,512 8,69 0,399 10,84 0,864 

5           0,503 8,43 0,392 10,67 0,868 

6           0,510 8,41 0,392 10,80 0,865 

7           0,522 8,52 0,397 11,06 0,858 

8           0,499 8,04 0,383 10,58 0,870 

9           0,503 8,02 0,372 10,67 0,868 

10           0,506 8,30 0,390 10,72 0,867 

11           0,536 8,36 0,402 11,35 0,851 

12           0,545 8,61 0,398 11,55 0,845 

13           0,540 9,25 0,419 11,44 0,848 

14           0,533 8,33 0,389 11,29 0,852 

15           0,556 9,27 0,423 11,78 0,839 

 

 

 

Рис. 8. Пример результатов предсказания нейронной сети  
прогнозирования теплового потребления здания для отопительного периода 

 

Fig. 8. Example of neural network prediction results for forecasting building  
heat consumption for the heating period 

 
Из рис. 8 можно увидеть, что модель прогнозирования также учитывает 

нелинейность в характере распределения данных. Сравнение оригиналь-
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ных значений и значений, полученных с использованием модели предска-
зания на всем временном интервале, показано на рис. 9. 

Чтобы оценить точность моделирования, проведем сравнение средней 
абсолютной процентной ошибки лучшей модели прогнозирования со зна-
чением предела допускаемой относительной погрешности измерений теп-
ловой энергии измерительным каналом теплосчетчика.  

 

 
 

Рис. 9. Сравнение результатов предсказания нейронной сети и исходных данных  
теплового потребления здания для отопительного периода  

 

Fig. 9. Comparison of neural network prediction results and initial data  
on building heat consumption for the heating season 

 
 
Согласно нормативным данным, значение максимального предела до-

пускаемой относительной погрешности измерений тепловой энергии изме-
рительным каналом теплосчетчика составляет 5 %. Значение средней абсо-
лютной процентной ошибки лучшей модели прогнозирования составило 
примерно 8 %, что сравнимо со значением максимального предела допус-
каемой относительной погрешности измерений тепловой энергии измери-
тельным каналом теплосчетчика, и может быть использовано для практи-
ческих целей. 

Для исследований, основанных на данных, их объем и качество серь- 
езно влияют на выбор используемых методов и точность получаемых  
результатов. В последние годы быстро появляются новые алгоритмы ма-
шинного обучения, что в будущем может позволить получать точность  
моделей прогнозирования, стремящуюся к точности реальных прибо- 
ров измерения тепловой энергии, поэтому разработка процедур обучения, 
и определения наилучшего набора входных данных, безусловно, заслужи-
вают изучения. Нейронные сети, созданные для различных объектов, могут 
иметь различный порядок важности входных признаков. Если предполага-
ется прогнозирование с учетом внутренних факторов здания, таких как из-
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менение физических характеристик, функций здания, состояния людей  
и факторов внутренней среды, то оптимальный набор входных характери-
стик и уровней важности также могут существенно отличаться.  

Данные модели прогнозирования обучаются и тестируются на основе 
реальных исторических погодных данных, зарегистрированных комму-
нальными предприятиями и метеостанциями. Это означает, что в таких 
данных нет неопределенности. Для прогнозирования теплового спроса мо-
гут быть доступны только данные прогноза погоды, которые, безусловно, 
содержат ошибки прогнозирования. Следовательно, модели прогнозирова-
ния теплового потребления наилучшим образом подходят не для прогнози-
рования будущего теплового спроса, а для прогнозирования результатов 
применения энергосберегающих решений. 

 
ВЫВОДЫ 
 

1. Получены значения коэффициентов корреляции параметров модели 
прогнозирования энергопотребления, которые позволяют продемонстриро-
вать зависимости выбранных параметров друг от друга, что является необ-
ходимым условием ранжирования этих параметров, дающих превалирую-
щий вклад. Установлено, что коэффициенты корреляции между тепловым 
потреблением здания и климатологическими параметрами, рассчитанные 
для отопительного периода, значимо превышают аналогичные показатели, 
полученные по данным за календарный год. 

2. Построены модели теплопотребления зданий с использованием ис-
кусственного интеллекта по данным, полученным в результате пятилетне- 
го мониторинга теплогидравлических режимов тепловых пунктов зданий  
г. Красноярска. 

3. Произведено сравнение точности моделей с различными наборами 
входных параметров по нескольким критериям. Показано, что точность 
лучшей модели прогнозирования сопоставима со значением предела до-
пускаемой относительной погрешности измерений тепловой энергии изме-
рительным каналом теплосчетчика. 
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