вы вод

Разработанная конструкция АД с ВКТУ, являясь относительно простой и дешевой, обладает рядом достоинств. В лаборатории кафедры «Теоретические основы электротехники» Гомельского государственного технического университета имени П. О. Сухого изготовлена конструкция АД с ВКТУ (рис. 2). Экспериментальные исследования АД с ВКТУ подтвердили правильность разработанных инженерных методов расчета и проектирования. Это позволило внедрить АД с ВКТУ в электропривод накопителя шасси с мостами № 101.12.24.000000 в филиале РУП «Гомсельмаш» «ГЗСК».

ЛИТЕРАТУРА

- 1. С о л е н к о в, В. В. Асинхронные двигатели с электромеханическими тормозными устройствами / В. В. Соленков, В. В. Брель // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). 2004. № 4. С. 28–32.
- 2. Гус е ль ников, Э. М. Самотормозящиеся электродвигатели / Э. М. Гусельников, Б. С. Цукерман. М.: Энергия, 1971.-96 с.
 - 3. K a r l, E. Brinkmann GmbH. Electromagnetic technology www.keb.de. 2010. № 8. 52 c.
- 4. А л е к с а н д р о в, М. П. Тормозные устройства / М. П. Александров, А. Г. Лысяков. М.: Машиностроение, 1985. 312 с.
- 5. С о л е н к о в, В. В. Оптимизация параметров электромагнита в двигателях с тормозными устройствами / В. В. Соленков, В. В. Брель // Вестник ГГТУ имени П. О. Сухого. -2004. -№ 3. C. 33–36.
- 6. С о л е н к о в, В. В. Бесконтактные схемы форсировки в тормозных устройствах асинхронных двигателей / В. В. Соленков, В. В. Брель // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). 2009. \mathbb{N} 4. С. 31–36.

Представлена кафедрой теоретических основ электротехники

Поступила 25.05.2011

УДК 621.019

КОМПЬЮТЕРНАЯ ТЕХНОЛОГИЯ ОЦЕНКИ ЦЕЛЕСООБРАЗНОСТИ ОТКЛЮЧЕНИЯ ТРАНСФОРМАТОРОВ НА КАПИТАЛЬНЫЙ РЕМОНТ

Докт. техн. наук, проф. ФАРХАДЗАДЕ Э. М., кандидаты техн. наук МУРАДАЛИЕВ А. З., РАФИЕВА Т. К., инж. ИСМАИЛОВА С. М.

АзНИПИИ энергетики (Баку, Республика Азербайджан)

Проблема оптимального восстановления износа силовых трансформаторов и автотрансформаторов (далее – трансформаторов), срок службы которых превышает нормативное значение, относится к числу наиболее важных и трудных. Процесс старения оборудования естествен и характерен не только для трансформаторов (ТР). Поэтому выработанные практикой

основные направления обеспечения долговечности не подлежат сомнению. Это систематический контроль технического состояния и тем более полный, чем больше срок службы, снижение нагрузки, ограничение воздействия внешних факторов, способствующих старению оборудования, разумное восстановление износа, снижение воздействия «человеческого фактора». «Интуитивное решение» о проведении капитального ремонта (КР) без достаточного учета технического состояния ТР и значимости последствий его повреждения реализуется в условиях риска снижения надежности и возникновения повреждения активной части и, как правило, приводит к неоправданным затратам. Обоснованности решений в значительной степени способствуют данные об «истории жизни» ТР, т. е. совокупности сведений об условиях эксплуатации, техническом обслуживании и ремонте, возможность объективного и оперативного анализа ретроспективных данных, привлечение к анализу сведений об «истории жизни» аналогичного оборудования. Так, в соответствии с [1] «техническое состояние энергооборудования определяется не только путем сравнения результатов конкретных испытаний с нормативными значениями, но и по совокупности результатов всех проведенных испытаний, осмотров и данных эксплуатации». Эти сведения регламентированы в [2] и именуются «информационной поддержкой персонала» при решении задач эксплуатации и ремонта.

Стремление уменьшить риск ошибочного решения, наукоемкость объективного анализа ретроспективных данных, трудоемкость и громозкость вычислений, возможные ошибки ручного счета обусловливают целесообразность применения интеллектуальных автоматизированных информационных систем (АИС), обеспечивающих руководство и персонал необходимой информацией о техническом состоянии ТР с предложениями по восстановлению их износа. Укрупненная блок-схема разработанной авторами интеллектуальной автоматизированной информационной системой трансформаторов (АИСТР) приведена на рис. 1 и представлена тремя блоками.

Блок 1 характеризует базу данных о TP энергосистемы, в том числе паспортные данные и сведения об условиях эксплуатации, сведения о нерабочих состояниях и дефектах, данные результатов испытаний и восстановления износа, справочную и нормативную информацию. Для каждого объекта базы данных разработаны процедуры ввода, корректировки, просмотра, обеспечения безопасности и безошибочности. Блок 2 («анализ технического состояния TP») формирует выборку из парка TP для заданных разновидностей признаков (РП), тем самым обеспечивая возможность контроля исполнения предписаний Правил устройства электроустановок и Правил технической эксплуатации; анализирует изменение суммарной установленной мощности и срок службы TP, представляет объективную характеристику безотказности, долговечности и ремонтопригодности TP. Блок 3 предусматривает возможность обращения к современной нормативно-технической документации по вопросам организации технического обслуживания и ремонта TP.

В настоящей статье основное внимание уделяется подсистеме «Анализ ремонтопригодности ТР» (блок 2.4, рис. 1). На рис. 2 приведена укрупненная блок-схема этой подсистемы. Рассмотрим некоторые особенности ее функционирования.

Рис. 1. Укрупненная блок-схема АИСТР

Очевидно, что сроки проведения плановых ремонтов ТР в значительной степени определяются сведениями о его техническом состоянии. Отдельные разделы этой информации сосредоточены в блоке «Данные нерабочих состояний ТР» (блок 2.4.1.1). Под «нерабочим состоянием» будем понимать состояние, при котором ТР отключен. В «нерабочем состоянии» ТР находится при отключениях: вследствие короткого замыкания как при повреждении самого ТР, так и на элементах присоединения; согласно аварийной или плановой заявке; для проведения плановых ремонтов смежных элементов; в резерв; по режиму работы.

Автоматические отключения ТР происходят преимущественно при превышении хотя бы одним из диагностических показателей (ДП) предельно допустимого значения и очередном дискретном воздействии соответствующего этому ДП внешнего фактора. Например, при увлажнении изоляции (уменьшении сопротивления изоляции и увеличении тангенса угла диэлектрических потерь) и воздействии перенапряжения. Отключения ТР по аварийной заявке проводятся для устранения дефектов, выявленных при осмотре, способных привести к автоматическому отключению ТР (например, недопустимый нагрев контактов, несоответствие ДП трансформаторного масла предъявляемым требованиям, повышенные вибрация и шум, повреждение фарфоровой изоляции ввода и др.).

Если сведения о нерабочих состояниях регистрируются в диспетчерских журналах, то все выявленные при осмотре дефекты прежде всего регистрируются в журнале дефектов. Эта информация периодически заносится в специальные формы и вводится в банк данных АИСТР.

Дополнительные потери активной мощности в линейных проводах и увеличение мощности электроприемников при несимметричном режиме $\Delta P_{\pi}/\Delta P_{\mathrm{np}}$, кВт	Величины дополнительных потерь полной и активной мощности в нейтральном проводе S_n/P_n , кВ· A/κ Вт	Фактическое значение $P_{\rm xx}$ по фазам трансформатора при несимметричном режиме работы, кВт	Увеличение P_{xx} в зависимости от фактических значений фазных напряжений, кВт	Потери от вихревых токов в P_{xx} , при нормальном режиме, кВт	Φ актическое значение $P_{ m xx}$ в трансформаторе, к ${ m Br}$	Номинальное значение потерь в трансформаторе P_{xx} , кВт	Коэффициент формы напряжений фаз, о. е.	Расчетная величина напряжения нулевой последовательности на стороне ВН $U_{ m o}$, В	Расчетные величины линейных и фазных напряжений на стороне ВН, кВ	Расчетные величины фазных токов на стороне ВН, А	Измеренная и расчетная величины тока нейтрального провода I_N , ${ m A}$	Напряжение нейтрального провода $U_{\mathit{N}_{5}}$ В	Измеренные линейные и фазные напряжения $U_{_{\mathrm{H3.I\!P}}}/U_{_{\mathrm{H3.4\!P}}}$ В	Измеренные фазные токи $I_{\scriptscriptstyle \mathrm{H3}}$ А	Измеренные фазные реактивные мощности $Q_{ ext{ iny B3}}$ квар	H змеренные фазные активные мощности $P_{ m n_3}$ к ${ m B}{ m T}$	Измеренные фазные полные мощности $S_{_{ m H3}}$ кВ-А	Обозначение фазы
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
		0,46	0,06	0,22	0,4	0,35	1,247	346	10,6/6,13	7,32			427/250	147	10	35,4	36,8	A
	5,2/5,17	0,46	0,06	0,22	0,4	0,35	1,247	346	10,3/5,96	8,9	113/118	44	431/235	220	4.5	56,4	56,6	В
2,1/4,76		0,782	0,1	0,375	0,682	0,35	1,247	346	11,05/6,39	10			423/248	282	9	66,3	66,9	С
		1,702				1,05									23,5	158,1	160,3	Σ

Таблица 2

Номер линии	Маги	стральная ли	ния 1	Магис	стральная ли	іния 2	Магист	гральная ли	ния 3
Расчетная величина	Фаза А	Фаза В	Фаза С	Фаза А	Фаза В	Фаза С	Фаза А	Фаза В	Фаза С
Средняя величина фазных нагрузок $P_{\phi cp}$, кВт	9,77	10,4	2,8	3,84	3,43	8,62	13	16,3	18,4
Дисперсия графиков нагрузок DP_{ϕ} , кВт 2	67,7	59	7,42	9,54	12,55	58	22,95	10,5	20,6
Среднеквадратичное отклонение графиков нагрузок σ, кВт	8,23	7,7	2,7	3,1	3,54	7,62	4,8	3,2	4,54
Плотность вероятности распределения графика нагрузки $W(P_{\tau})$, о. е.	0,687	0,671	0,846	0,654	0,695	0,611	0,455	0,681	0,52
Коэффициент несимметрии графиков нагрузок $K_{\scriptscriptstyle \mathrm{H}}$	0,697	0,91	-0,75	-0,091	-0,272	1,88	3	2,17	0,625
Эффективное значение нагрузки P_3 , кВт	12,77	12,93	3,91	4,95	4,93	11,5	13,86	16,62	19
Γ енеральное среднее значение нагрузки $\overline{P}_{^{\mathrm{cp}}}$, к $\mathrm{B}\mathrm{T}$		7,41			5,3			15,74	
Эффективное значение нагрузки по графику P_3 , кВт		9,24			6,81			16,15	
Эффективное значение активной нагрузки, определенной по (7) , P_3 , кВт		9,28			6,5			16,26	
Расчетная нагрузка графиков нагрузок $P_{\rm p}$, кВт	17,6	18,1	6,3	6,8	7,15	18,7	14,8	19,5	20

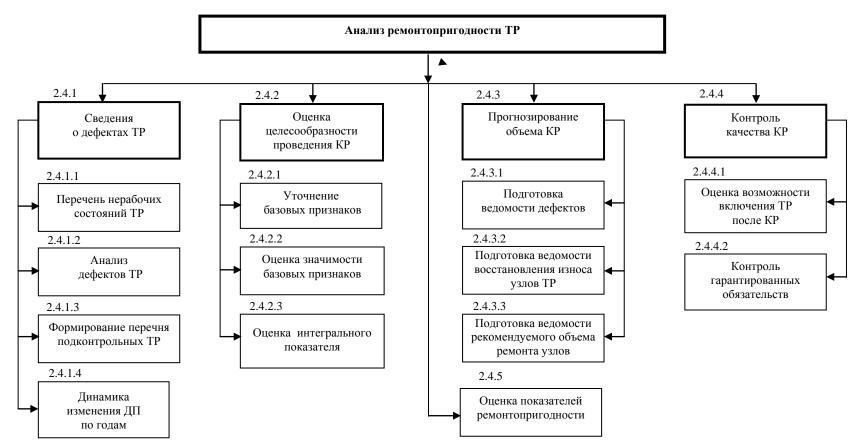


Рис. 2. Укрупненная блок-схема алгоритма подсистемы «Анализ ремонтопригодности ТР»

В блоке 2.4.1.2 проводится анализ дефектов, выявленных и устраненных в период между КР при осмотрах и межремонтных испытаниях узлов однотипных ТР, а также выявленных по данным испытания непосредственно до и в период КР, что служит основанием при планировании объема ремонта. Анализ многочисленных протоколов испытаний свидетельствуют о том, что имеют место случаи, когда нормы контроля ДП не соответствуют предъявляемым требованиям (для ТР, изготовленных в дальнем зарубежье), величина текущего износа менее исходного значения, неверная интерпретация норм испытания (например, ограничение численного значения ДП «30 % от исходного» и «на 30 % от исходного»), выполнение заключения о техническом состоянии по неполному перечню испытаний, отсутствие данных об исходных значениях ДП ТР и др. Аналогичные результаты, по литературным данным, характерны для многих энергосистем.

Переход к системе автоматизированной оценки ДП и их сравнения с предельно допустимыми значениями позволяет повысить объективность контроля технического состояния ТР, снизить влияние «человеческого фактора», обеспечить достоверность базы данных.

Перечень ТР, находящихся на подконтрольной эксплуатации (блок 2.4.1.3), традиционно формируется на основе данных периодических осмотров и результатов межремонтных испытаний при условии, что выявленные несоответствия ДП предъявляемым требованиям не устранены. В иллюстративных целях в табл. 1 приведены результаты анализа данных измерения ряда ДП трехобмоточного ТР. Суть анализа сводится к сопоставлению этих данных с предельно допустимыми значениями (ПДЗ) ДП.

Наименование ДП			Исходное значение $\Pi_{0,i}$		значение ДП,	Текущее значение $\Pi_i(t_i)$	Результат испытания	
		06.1996	Норматив	Оценка	07.2008			
R_{60} из	воляци	и ВН	5700 МОм	≥0,5 ∏ _o	2850 МОм	3050 МОм	В норме	
»	>>	CH	5400 МОм	≥0,5 ∏ _o	2700 МОм	3850 МОм	В норме	
»	»	HH	6500 МОм	≥0,5 ∏ _o	3250 МОм	5050 МОм	В норме	
tgδи	золяці	ии ВН	0,35 %	≤1,5 Π _o	0,525 %	0,495 %	В норме	
>>	>>	CH	0,31 %	≤1,5 Π _o	0,465 %	0,37 %	В норме	
>>	>>	HH	0,42 %	≤1,5 ∏ _o	0,63 %	0,44 %	В норме	

Заключение. Результаты испытания удовлетворяют предъявляемым к ТР требованиям.

Если значение ДП хуже, чем ПДЗ ДП, то TP относится к группе TP с подконтрольной эксплуатацией. Все остальные TP относятся к группе с удовлетворительным техническим состоянием. Как следует из табл. 1, рассматриваемые ДП не превышают своих ПДЗ, а TP удовлетворяет предъявляемым требованиям. Однако при этом не учитывается степень различия результатов измерения ДП и ПДЗ ДП и тем самым остается открытым вопрос о возможности возникновения дефекта и отказа TP в межремонтный период.

Чтобы учесть эту возможность, предлагается массив TP с подконтрольной эксплуатацией дополнить TP, для которых срок использования остаточного ресурса не превышает интервал межремонтного периода.

Для количественной оценки степени различия результатов измерения ДП и ПДЗ ДП воспользуемся следующими понятиями:

• интервал допустимого изменения ДП. Вычисляется по формуле

$$\Delta\Pi_i = \left| \Pi_{\text{пр.д},i} - \Pi_{\text{o},i} \right|,\tag{1}$$

где $\Pi_{\text{пр.д},i}$, $\Pi_{\text{o},i}$ – соответственно предельно допустимое и исходное значения i-го ДП, $\Pi_{\text{o},i} = \Pi_i(t_{\text{o}})$; величина $\Delta \Pi_i$, по существу, представляет собой заданный резерв i-го свойства, характеризуемого i-м ДП;

ullet величина использованного резерва i-го свойства в момент t

$$\Delta\Pi_{i}(t) = \left| \Pi_{i}(t) - \Pi_{0,i} \right|; \tag{2}$$

ullet относительное значение использованного резерва i-го свойства в момент t

$$Iz(\Pi_{i},t) = \frac{\Delta\Pi_{i}(t)}{\Delta\Pi_{i}} = \frac{\Pi_{i}(t) - \Pi_{o,i}}{\Pi_{\text{пр.д,}i} - \Pi_{o,i}}.$$
(3)

В соответствии с принятой в теории диагностики терминологией будем называть величину $I_Z(\Pi,t)$ износом. Величина $I_Z(\Pi_i,t)$ позволяет повысить объективность классификации TP энергосистемы по техническому состоянию. Будем различать следующие группы TP по износу:

группа катастрофического износа
$$Iz\left(\Pi,t\right) \ge 1,2;$$
 группа с дефектом $1,0 < Iz\left(\Pi,t\right) \le 1,2;$ группа риска возникновения дефекта $0,8 < Iz\left(\Pi,t\right) \le 1,0;$ группа удовлетворительного состояния $0,2 < Iz\left(\Pi,t\right) \le 0,8;$ группа хорошего состояния $0 < Iz\left(\Pi,t\right) \le 0,2;$

• остаточный ресурс

$$\operatorname{Re}(\Pi_{i},t) = 1 - I_{Z}(\Pi_{i},t); \tag{5}$$

• относительная величина средней скорости изменения ДП

$$\vartheta \Big[Iz \Big(\Pi_i, \Delta t \Big) \Big] = \frac{Iz \Big(\Pi_i, t_j \Big)}{t_j - t_o} = \frac{\Pi \Big(t_j \Big) - \Pi_{o,i}}{\Delta t}; \tag{6}$$

 прогнозируемый срок использования остаточного ресурса. Вычисляется по формуле

$$\Delta T_{i} = \frac{\operatorname{Re}\left(\Pi_{i}, t_{j}\right)}{9\left[Iz\left(\Pi_{i}, \Delta t\right)\right]} = \frac{\left[\Pi_{\operatorname{np}, \Pi, i} - \Pi_{i}\left(t_{j}\right)\right] \Delta t}{\left[\Pi_{\operatorname{np}, \Pi, i} - \Pi_{o, i}\right]\left[\Pi\left(t_{j}\right) - \Pi_{o, i}\right]}.$$
(7)

Если обозначим период между плановыми ремонтами через $\Delta t_{\rm p}$, то при $\Delta T_i < \Delta t_{\rm p}$ в межремонтный период величина $\Pi_i(t)$ превысит $\Pi_{{\rm пp.д},i}$, а нелинейная скорость развития дефекта может привести к катастрофическому

износу, отказу и автоматическому отключению ТР или необходимости отключения ТР по аварийной заявке.

Чтобы предотвратить эти отключения, необходимо увеличить остаточный ресурс путем восстановления износа или же уменьшить скорость износа путем снижения величины и продолжительности максимальной нагрузки, снизить число и величину воздействующих на изоляцию обмоток ТР сквозных токов короткого замыкания и перенапряжений. Если же $\Delta T_i > \Delta t_{\rm p}$ или, тем более, $\Delta T_i >> \Delta t_{\rm p}$, то проведение ремонта узла и восстановление износа $Iz(\Pi_i,t_j)$ нецелесообразны. Как было отмечено выше, решение о проведении КР в этом случае связано с существенным риском возникновения новых дефектов, неоправданных больших затрат.

В иллюстративных целях в табл. 2 приведены результаты анализа технического состояния ТР с учетом степени отличия износа $Iz(\Pi_i,t_j)$ от предельно допустимого значения для результатов измерения ДП, приведенных в табл. 1. Как следует из табл. 2, анализ технического состояния ТР по величине $Iz(\Pi_i,t_j)$ позволяет выявить ДП, которые находятся в группе риска возникновения дефекта. Это первый и четвертый ДП. Однако более эффективным оказывается критерий сравнения ΔT_i с t_p . И это не случайно, так как в этом сравнении учитывается не только величина, но и скорость изменения износа. Для первого ДП $\Delta T_1 < t_p = 2$, а для четвертого ДП $\Delta T_4 > t_p$. Таким образом, учет степени отличия ДП от его ПДЗ позволил установить, что техническое состояние ТР на самом деле не удовлетворяет предъявляемым требованиям.

Таблица 2 Иллюстрация оценки технического состояния трансформатора по показателям долговечности для ряда ДП

I	ние ЛП		Резерв	Степень использова-	Относитель- ная величина	Прогнозируе- мый срок ис-	-	т испыта- ю данным
1			измене- ния ДП	использования резерва $I_Z(\Pi_i, t_j)$, %	средней скоро- сти изменения ДП, о. е./лет	пользования ресурса ΔT_i , лет (мес.)	$Iz(\Pi_i, t_j)$	ΔT_i
R_{60}	изоляции	вН	2850 o. e.	93	0,0775	0,9 (10,8)	Риск дефектов	Неудовлет- ворительное
*	»	СН	2700 o. e.	57,4	0,0478	8,9	Удовлетво- рительное	Удовлетво- рительное
*	»	НН	3250 o. e.	44,6	0,0371	14,9	Удовлетво- рительное	Удовлетво- рительное
tgδ	изоляции	вН	0,175 %	82,8	0,069	2,49	Риск дефектов	Удовлетво- рительное
»	»	СН	0,155 %	38,7	0,0322	19	Удовлетво- рительное	Удовлетво- рительное
>>	»	НН	0,21 %	9,5	0,0079	114	Хорошее	Удовлетво- рительное

Заключение. Результаты испытания не удовлетворяют предъявляемым к ТР требованиям.

В соответствии с рекомендациями [3] в блоке 2.4.1.4 проводится построение закономерностей изменения ДП во времени, в частности ДП ТР, находящихся в подконтрольной эксплуатации.

Опыт эксплуатации ТР показывает, что целесообразность проведения КР ТР (блок 2.4.2) определяется значимостью ряда признаков. Условимся называть их базовыми. К ним относятся:

- срок службы $T_{\text{сл}} = t_{\text{т}} t_n$, где $t_{\text{т}}$ и t_n соответственно текущий год и год ввода в эксплуатацию, лет;
- относительная величина максимальной нагрузки $\delta S_{\rm H}$, о. е., где $S_{\rm H}$ номинальная мощность TP;
 - число сквозных токов короткого замыкания $n_{\rm KS}$;
 - наработка после КР $T_{\kappa p}$, лет;
 - среднее число отключений по аварийной заявке $n_{\mathrm{a.s.}}^*$, откл./год;
 - среднее число автоматических отключений $n_{\rm ab}^*$, откл./год;
- степень соответствия технического состояния узлов ТР предъявляемым требованиям

$$Iz(t) = \max\{Iz(\Pi_i, t)\}_{n_{\pi}}$$

где i = 1, n_{A} , n_{A} – число ДП;

• значимость последствий автоматического отключения у, о. е.

В табл. 3 приведены опытные значения интервалов изменения разновидностей базовых признаков. Чем порядковый номер интервала выше, тем выше и целесообразность планового восстановления износа ТР.

Численные значения базовых признаков со временем изменяются. Например, возрастают срок службы $T_{\rm cn}$ и наработка после КР $T_{\rm kp}$, возможно увеличение числа сквозных токов короткого замыкания $n_{\rm k3}$, среднего числа отключений ($n_{\rm a.s.}^*$ и $n_{\rm aB}^*$) и пр. Уточнение базовых признаков (блок 2.4.2.1) осуществляется периодически при характеристике технического состояния ТР и планировании восстановления износа.

Таблица 3 Классификация интервалов значимости базовых признаков

Тип	Интервалы изменения признаков					
признака	1	2	3	4	5	
$T_{\rm cn}$, лет	0–12	13–24	25–36	37–48	≥48	
$\delta S_{\text{\tiny H}}$, o.e.	≤0,5	0,5–0,75	0,75-1,0	1,0-1,25	≥1,25	
$n_{{\scriptscriptstyle \mathrm{K}3}}$	0	1; 2	3; 4	5; 6	≥6	
$T_{\rm \kappa p}$, лет	≤3	4–6	7–9	10–12	≥12	
$n_{a.3}^*$,						
откл./год	0–1	1–2	2–3	3–4	≥4	
n_{aB}^* ,						
откл./год	0-0,5	0,5–1	1–1,5	1,5–2	≥ 2	
Iz(t), o.e.	≤0,2	0,2-0,8	0,8–1,0	1,0–1,2	≥1,2	
γ	Снижение структурной надежности	Ограничение транзита ЭЭ	Отказ в транзите ЭЭ	Обесточение нагрузки потре- бителя	Системная авария	

В блоке 2.4.2.2 абсолютному значению каждого из базовых признаков сопоставляется номер интервала $r_{i,j}$, включающего соответствующее аб-

солютное значение признака, где i – порядковый номер TP; j – порядковый номер базового признака. Например, сроку службы TP, равному 39 годам, сопоставляется порядковый номер 4, а относительной величине износа 1,28 сопоставляется порядковый номер 5. Составляется эмпирическая таблица $\{r_{i,j}\}$, где $i=1, M_{\rm TP}$; $j=1, n_{\rm 6n}$; $M_{\rm TP}$ – число TP; $n_{\rm 6n}$ – число базовых признаков. Условимся называть $r_{i,j}$ значимостью базового признака. Одинаковые единицы измерения реализаций $\{r_{i,j}\}$ позволяют перейти к интегральному показателю целесообразности планового восстановления износа $r_{i,\Sigma}$:

$$r_{i,\Sigma} = \sum_{j=1}^{n_{\text{fin}}} r_{i,j}, \quad i = 1, M_{\text{Tp}}.$$
 (8)

Интегральный показатель позволяет выполнить восстановление износа ТР, выход из строя которых наиболее вероятен и нанесет наибольший ущерб энергосистеме.

Составление эмпирической таблицы и расчеты оценок $r_{i,\Sigma}$ по формуле (8) приводятся в блоке 2.4.2.3. Таким образом, метод формирования последовательности ТР с убывающей целесообразностью отключения на КР сводится к выполнению следующих вычислений:

- 1. Уточнение перечня базовых признаков. Дело в том, что не всегда ретроспективная информация содержит сведения обо всех базовых признаках.
- 2. Построение распределения реализаций каждого базового признака и уточнение каждого из пяти интервалов их изменения.
- 3. Для каждого TP энергосистемы вычисляется значимость каждого из базовых признаков ($r_{i,j}$, $i=1, M_{\rm TP}$; $j=1, n_{\rm GH}$).
- 4. По формуле (8) вычисляется интегральная оценка целесообразности отключения ТР на КР ($r_{i,\Sigma}$, $i=1, M_{\rm тp}$; $j=1, n_{\rm бп}$).
- 5. Проводится ранжировка ТР по мере снижения целесообразности отключения на КР.
- 6. Выделяются группы ТР с одинаковым значением интегрального показателя ($r_{i,\Sigma}$ = const).
- 7. Проводится ранжировка TP в каждой группе по числу базовых признаков с максимальной значимостью.

В соответствии с [3] КР ТР 110 кВ и выше мощностью 125 МВ-А и более проводится не позднее чем через 12 лет после ввода в эксплуатацию с учетом результатов диагностического контроля, а в дальнейшем — по мере необходимости. Поэтому автоматизированное формирование перечня ТР, рекомендуемых для вывода в КР в текущем году, состоит из двух этапов. На первом этапе из общего перечня ТР энергосистемы выделяются ТР, сроку службы которых исполняется 12 лет, при условии, что эти ТР не выводились в КР. На втором этапе этот перечень дополняется ТР с наибольшей величиной интегрального показателя, включающего численное значение наибольшей значимости (пять) не менее чем для одного базового признака.

Именно этот перечень рекомендуется как основа при выборе TP, отключаемых на KP. Объективность метода ежегодно контролируется путем сопоставления прогнозируемого и реального перечней TP для предшествовавшего года, а повышение точности прогноза достигается уточнением данных эмпирической таблицы.

Известно, что основными элементами ТР, определяющими его предельное состояние, являются обмотки и магнитопровод. Считается, что все остальные элементы (узлы) при наличии в них повреждений можно и необходимо либо ремонтировать, либо заменить, не заменяя ТР в целом. В основе прогнозирования объема КР ТР лежит дефектная ведомость, которая на практике составляется и уточняется по данным осмотров и испытаний. АИСТР располагает этими данными, а подготовка ведомости дефектов узлов ТР осуществляется в блоке 2.4.3.1. Не менее важной информацией являются сведения об объеме восстановления износа узлов ТР при его внезапных отключениях и отключениях по аварийной заявке, а также сведения о восстановлении износа однотипных ТР. Эта информация подготавливается в блоке 2.4.3.2. Повышение точности рекомендаций достигается учетом причин расхождения реального объема КР и прогнозируемого (блок 2.4.3.3).

Контроль качества ремонта ТР (блок 2.4.4) относится к одной из основных задач эксплуатации и в основном проводится при завершении КР (для выяснения возможности включения ТР в работу) путем сравнения результатов измерения ДП с ПДЗ. Контроль договорных гарантированных обязательств (являющихся непременным атрибутом успешных предприятий, проводящих КР ТР) как правило, не проводится. По сути, эти два сравнения однотипны с той разницей, что первые осуществляются непосредственно после КР, а вторые – в течение интервала времени гарантированных обязательств (два года) и по результатам итоговых испытаний.

Кроме того, контроль при вводе предполагает измерение ДП как отдельных узлов (обмотки, магнитопровод, вводы, переключающие устройства и др.), так и для ТР в целом. При контроле исполнения гарантированных обязательств перечень контролируемых ДП уменьшается. В основном измеряются ДП, характеризующие техническое состояние ТР в целом. При сравнении ДП считается, что если выполняется условие (9), то качество ремонта не удовлетворяет предъявляемым требованиям, иначе говоря:

если
$$\Pi_{i}^{\Pi} < \Pi_{i,\text{доп}}$$
 при $\Pi_{i,\text{o}} > \Pi_{i,\text{доп}};$ если $\Pi_{i}^{\Pi} > \Pi_{i,\text{доп}}$ при $\Pi_{i,\text{o}} < \Pi_{i,\text{доп}},$ (9)

где $\Pi_i^{\Pi} - i$ -й ДП; $i = 1, n_{\pi}$; индекс «П» означает результаты измерения непосредственно после КР, то качество ремонта неудовлетворительно. Однако сопоставление типа (9) не всегда отражает удовлетворительное качество ремонта. Нередки случаи, когда после КР ДП мало отличается от $\Pi_{\text{доп}}$ или величина $Iz(\Pi_i, t_j)$ превышает аналогичную величину до КР и вскоре после включения в работу ТР отказывает. Поэтому целесообразно дать более объективную оценку качества КР, классифицируя результат сравнения ДП до и после КР по одному из следующих уровней:

если
$$r_{i,7}^{\Pi} = r_{i,7}^{\Pi}$$
 и $r_{i,7}^{\Pi} = 1$ – без изменения, хорошее, или $r_{i,7}^{\Pi} = 2$ – без изменения, удовлетворительное, или $r_{i,7}^{\Pi} > 2$ – без изменения, неудовлетворительное, - неудовлетворительное. $r_{i,7}^{\Pi} > r_{i,7}^{\pi}$ — неудовлетворительное. $r_{i,7}^{\Pi} < r_{i,7}^{\pi}$, $r_{i,7}^{\pi} = 1$ — хорошее, $r_{i,7}^{\pi} = 2$ — удовлетворительное, $r_{i,7}^{\pi} > 2$ — неудовлетворительное.

c $i = 1, M_{TD}$.

Соотношения (10) поясняют данные табл. 4.

Таблица 4 Классификация качества капитальных ремонтов ТР

Значимость ДП до	Значимость ДП после КР						
КР	Хорошее	Удовлетворительное	Область риска	Дефектное			
Хорошее	Без изме- Неудовлетвори- нения тельное		Неудовлетворительное	Неудовлетворительное			
Удовлетворительное	Хорошее	Без изменения, удовлетворительное	Неудовлетворительное	Неудовлетворительное			
Область риска	Хорошее	Удовлетворительное	Без изменения, не- удовлетворительное	Неудовлетворительное			
Дефектное	Хорошее	Удовлетворительное	Неудовлетворительное	Без изменения не- удовлетворительное			

Классификация уровней выполнения гарантированных обязательств имеет вид:

$$r_{i,7}^{\Pi} = 1$$
 и $r_{i,7}^{\Gamma} = 1$ – хорошее,

или $r_{i,7}^{\Gamma} = 2$ – удовлетворительное,

или $r_{i,7}^{\Gamma} > 2$ – неудовлетворительное,

 $r_{i,7}^{\Pi} = 2$ и $r_{i,7}^{\Gamma} = 2$ – удовлетворительное.

или $r_{i,7}^{\Gamma} > 2$ – неудовлетворительное,

 $r_{i,7}^{\Pi} = 3$ и $r_{i,7}^{\Gamma} = 3$ – удовлетворительное,

или $r_{i,7}^{\Gamma} > 3$ – неудовлетворительное.

c $i = 1, M_{p}$

Рекомендации о возможности включения ТР после КР формулируются в блоке 2.4.4.1, а степень исполнения гарантированных обязательств — в блоке 2.4.4.2. В качестве примера в табл. 5 приведен фрагмент оценки качества восстановления износа при КР ТР по данным измерения ряда ДП активной части ТР до и после КР.

Пример традиционного контроля качества КР был бы аналогичен данным табл. 1, с той разницей, что вместо результатов текущего измерения ДП вводятся данные измерения ДП после КР. Факт несоответствия нормативам ПДЗ здесь, как правило, исключается, так как при его обнаружении причина несоответствия устраняется.

Другое дело, насколько ДП отличается от ПДЗ ДП. Для ТР, срок службы которых превышает расчетный, особенно для ТР, изготовленных в «дальнем зарубежье», возможность восстановления износа путем замены узла (элемента) ТР на новый часто проблематична. При отсутствии резервных узлов (элементов) полное восстановление износа невозможно. Приходится довольствоваться реальными возможностями восстановления износа, а ТР, даже после КР, по результатам очередных профилактических испытаний требуется считать находящимися на подконтрольной эксплуатации.

Таблица 5
Иллюстрация оценки качества ремонта ТР
по показателю значимости величины износа

i	Наименование ДП	Значимость износ		Оценка качества	
	, ,	До КР	После КР	ремонта	
1	R_{60} изоляции ВН	3	2	Удовлетворительное	
2	» » CH	2	2	Без изменения, удовле-	
				творительное	
3	» » HH	2	1	Хорошее	
4	tgб изоляции BH	3	2	Удовлетворительное	
5	» » CH	2	3	Неудовлетворительное	
6	» » HH	1	1	Без изменения, хорошее	

Заключение. Качество ремонта неудовлетворительное.

Как следует из табл. 5, несмотря на то, что численные значения $Iz(\Pi_i,t_j)$ < 100 %, тангенс угла диэлектрических потерь обмотки CH существенно увеличился, находится в зоне риска, с большой вероятностью превысит ПДЗ до очередного планового (текущего) ремонта, что свидетельствует о необходимости снижения величины $Iz(\Pi_5,t)$.

В блоке 2.4.4.3 проводится анализ длительности простоя ТР в нерабочих состояниях, устанавливается характер распределения реализаций длительности восстановления износа.

выводы

1. Повышение эффективности технического обслуживания и ремонта ТР требует совершенствования системы информационного обеспечения руководства и персонала энергообъектов. Для этого, прежде всего, необходимо преодолеть ряд методических трудностей. В частности, настоятельно требуется совершенствование методологии планирования сроков и объемов КР ТР, оценки качества восстановления износа и исполнения гарантированных по договору обязательств. Существующие методы недостаточно полно учитывают значимость факторов, способствующих износу ТР, значимость последствий отказа ТР. В настоящее время:

- а) число TP, планируемых к отключению на KP, определяется финансовыми возможностями энергообъекта;
 - б) перечень ТР, выводимых на КР, назначается интуитивно;
- в) объем КР охватывает все узлы ТР и не зависит от их технического состояния.
- 2. Разработан новый метод оценки целесообразности проведения КР ТР. Целесообразность восстановления износа ТР в этом методе характеризуется численным значением интегрального показателя. Чем этот показатель больше, тем необходимость проведения КР выше. Ранжирование ТР в порядке уменьшения оценки интегрального показателя позволяет при заданных финансовых ограничениях получить последовательность ТР, КР которых наиболее оправдан.
- 3. Необходимый объем КР ТР отличается от полного объема КР и задается ведомостью дефектов, выявленных при осмотре и испытаниях ТР. Целесообразность восстановления износа бездефектных узлов ТР определяется исходя из условия непревышения гарантированной наработки до отказа интервала времени до очередного текущего ремонта.
- 4. Разработан новый метод оценки качества выполнения КР и договорных обязательств. К преимуществам этого метода относится возможность перехода от двух уровней качества КР (удовлетворительное и неудовлетворительное) к четырем уровням (хорошее, удовлетворительное, без изменения и неудовлетворительное), позволяющих, прежде всего, учесть степень различия текущего и предельно допустимого значений ДП.

ЛИТЕРАТУРА

- 1. О б ъ е м и нормы испытания электрооборудования: РД 34.45-51.300-97.-6-е изд. М.: НЦ ЭНАС, 1998.-256 с.
- 2. М е т о д и ч е с к и е указания по оценке состояния и продлению срока службы силовых трансформаторов: РД ЭО 0410–02. М.: Изд-во НЦ ЭНАС, 2001. 23 с.
- 3. П р а в и л а технической эксплуатации электроустановок потребителей. М.: Энергосервис, 2003.-168 с.

Поступила 11.04.2011