ПЕРЕЧЕНЬ СТАТЕЙ, ОПУБЛИКОВАННЫХ В ЖУРНАЛЕ «ЭНЕРГЕТИКА» в 2022 г.

І. ТЕМАТИЧЕСКИЙ УКАЗАТЕЛЬ

ОБЩАЯ ЭНЕРГЕТИКА

Зорина Т. Г., Панасюк В. В., Прусов С. Г. Типологизация и анализ значимо-		
сти рисков и угроз энергетической безопасности Республики Беларусь с учетом		
интеграции Белорусской АЭС в энергосистему	5	
ЭЛЕКТРОЭНЕРГЕТИКА		
Белоусов А. В., Скурятин Ю. В., Денисевич Н. А. Двухконверторный сило-		
вой активный фильтр с пониженными динамическими потерями: синтез управления		
и моделирование	5	
Брамм А. М., Хальясмаа А. И., Ерошенко С. А., Матренин П. В., Попко-		
ва Н. А., Секацкий Д. А. Оптимизация топологии сети с ВИЭ-генерацией на осно-		
ве модифицированного адаптированного генетического алгоритма	4	
Добрего К. В., Козначеев И. А. Симметрийно-резонансный механизм компен-		
сации паразитных моментов генератора на постоянных магнитах при стабильной		
нагрузке	3	
Добрего К. В. Симметрийно-резонансный механизм компенсации паразитных		
моментов генератора на постоянных магнитах при трогании и на холостом ходу	1	
Добрего К. В., Козначеев И. А. Универсальная имитационная модель дегра-		
дации аккумуляторных батарей с оптимизацией параметров по генетическому	,	
алгоритму	6	
Калечиц В. Н. Особенности моделирования режимов работы линий наружного	,	
освещения	6	
Лурье М. С., Лурье О. М., Фролов А. С. Подавление пульсаций управляемых	4	
выпрямителей для питания магнитных систем	4	
ской модели для определения магнитного потока рассеяния через зубцы статора		
синхронной электрической машины с дробной зубцовой обмоткой	3	
Обухов С. Г., Давыдов Д. Ю. Методика оптимизации компоновки ветроэлек-	3	
тростанций морского базирования с учетом затрат на электрическую систему сбора		
мощности	4	
Опейко О. Ф. Синтез на основе линеаризации векторного управления ско-		
ростью асинхронного электродвигателя без датчика скорости	2	
Плотников С. М. Определение потерь в стали и оптимизация толщины листов		
магнитопровода трансформатора	2	
Романюк Ф. А., Румянцев Ю. В., Румянцев В. Ю., Новаш И. В. Компенса-		
ция динамической фазовой погрешности при формировании ортогональных со-		
ставляющих входных сигналов в микропроцессорных защитах	3	
Романюк Ф. А., Румянцев Ю. В., Румянцев В. Ю. Формирование ортого-		
нальных составляющих входных сигналов в цифровых измерительных органах		
защит с коррекцией динамических погрешностей	4	

Румянцев Ю. В., Романюк Ф. А. Разработка в MATLAB-Simulink искусственной нейронной сети для восстановления искаженной формы вторичного тока. Часть 2	
Счастный В. П., Жуковский А. И. Электромагнитная совместимость компен- сирующих устройств и преобразователей регулируемого электропривода в элек- трических сетях промышленных предприятий	
Шашихин В. Н., Горячева Ю. М., Будник С. В. Подавление хаотических колебаний в малых энергетических системах.	2
теплоэнергетика	
Bashtovoi V. G., Reks A. G., Zahadskaya A. A. Features of the Behavior of a Plane Axisymmetric Magnetic Fluid Drop in a Nonmagnetic Solvent and a Uniform Magnetic Field.	
(Баштовой В. Г., Рекс А. Г., Загадская А. А. Особенности поведения плоской осесимметричной капли магнитной жидкости в немагнитном растворителе в однородном магнитном поле)	(
Бежан А. В. Оценка эффективности сооружения ветроэнергетических устано-	
вок на нужды теплоснабжения (Bezhan A. V. Efficiency Estimation of Constructing of Wind Power Plant for the	
Heat Supply Needs)	
Василевич С. В., Малько М. В., Дегтеров Д. В., Асадчий А. Н. Моделирова-	
ние процесса получения жидких продуктов пиролиза растительной биомассы с	
учетом скорости их охлаждения	
сатора перегретого пара тепловых насосов	
матического регулирования с внутренней моделью	
тельных котельных при работе на торфяном топливе	
схемы подключения алюминиевого радиатора марки STI на его теплотехнические	
характеристики	
лиз турбоустановок на органическом цикле Ренкина	
Овсянник А. В., Ключинский В. П. Тригенерационные турбоустановки на ос-	
нове низкокипящих рабочих тел	
массообмена в процессах тепловой обработки и сушки теплоизоляционных мате-	
риалов	
Паневник Д. А. Повышение энергетической эффективности использования	
нефтяных струйных насосов	
Петраш В. Д., Хоменко О. И., Басист Д. В., Уйма А. Концепция устройства	
и энергетический потенциал парокомпрессионного теплохладоснабжения на основе	
бинарного низкотемпературного источника	
Пехота А. Н., Филатов С. А. Исследование термоаналитическими методами	
энергетических свойств брикетированного многокомпонентного топлива	
Романюк В. Н., Нияковский А. М., Чичко А. Н., Яцкевич Ю. В., Рыжо-	
ва Т. Н. Численный анализ характеристик процесса тепловой обработки много-	
слойных композитных изделий в теплотехнологических установках	
Sednin A. V., Zherelo A. V. An Approach to Data Processing for the Smart District	
Heating System (Седнин А. В., Жерело А. В. О подходе к обработке данных для интеллек-	
туальных систем централизованного теплоснабжения)	

Седнин В. А., Иванчиков Е. О., Калий В. А., Мартинчук А. Ю. Энерготех-	
нологическая установка на базе нагревательной печи прокатного стана с опцией	
производства водорода	2
Седнин В. А., Игнатович Р. С. Анализ эффективности технологий извлечения	
диоксида углерода из продуктов сгорания	ϵ
Сорокин В. В. Расчет времени пуска пассивного каталитического рекомбина-	
тора водорода локализующей системы безопасности АЭС с ВВЭР	1
Uzakov G. N., Charvinski V. L., Ibragimov U. Kh., Khamraev S. I., Kamo-	
lov B. I. Mathematical Modeling of the Combined Heat Supply System of a Solar House	
(Узаков Г. Н., Червинский В. Л., Ибрагимов У. Х., Хамраев С. И., Кама-	
лов Б. И. Математическое моделирование комбинированной системы тепло-	
снабжения солнечного дома)	5
Филимонова А. А., Чичиров А. А., Чичирова Н. Д., Камалиева Р. Ф. Инте-	
грация высокотемпературного топливного элемента с системой улавливания СО2	
в энергетический цикл тепловой электрической станции	6
Шенец Е. Л. Оценка энергоэффективности промышленных печей на основе	
моделирования режимов потребления топлива	2
Янчук В. В., Романюк В. Н. Повышение эффективности действующих теп-	
ловых электрических станций в современных условиях	6
ГИДРОЭНЕРГЕТИКА	
Ивашечкин В. В., Богославчик П. М., Веременюк В. В., Немеровец О. В.	
Теоретические основы расчета размыва грунтовых плотин при переливе воды через	
гребень	3
Ивашечкин В. В., Медведева Ю. А. Оптимизация работы водозаборов под-	
земных вод с помощью двухколонных скважин	5
ЭКОНОМИКА ЭНЕРГЕТИКА	
Короткевич М. А., Подгайский С. И. О целесообразности прокладки вне на-	
селенных пунктов кабельных линий электропередачи напряжением 6–35 кВ вместо	
воздушных	5