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Abstract. The economies of the world are influenced by the rapidly changing global energy policy
agenda. Understanding energy trends implications in the long-term perspective is crucial for
responsible and informed sustainability-policy making, with respect to transformations required to
enhance the security of energy supply, resource efficiency and affordability, as well to as trans-
formations required to minimize energy poverty and mitigate ecological footprint. Nowadays the
price (value) competitiveness of technologies and products as their ability to respond to sustaina-
bility demands is becoming the appreciable criterion in choosing the pathways of technological
growth or economic strategies designing. The transition to energy sustainability is the so-called
quiet energy [r]evolution, or the transition towards 100 % renewable energy supply. Using
the sociotechnical transition, vulnerability and sustainable development theories for the assessment
of the energy safety level, this article aims to contribute to the understanding of cultural, institu-
tional and innovation prerequisites of sustainable energy transitions. Basing on historical exam-
ples, it argues that, despite the cultural dimensions, energy resources and energy mix disparity,
geographic location and income per capita, the value instead of cost philosophy in choosing energy
pathways maintains the sustainable energy transitions. The key findings are the defined prerequi-
sites of energy transitions sustainability; among them there are cultural dimensions, innovations
and the speeds of movement along learning curves when adopting new energy technologies as well
as energy policy patterns, applied in a country: value versus cost-driven. The Value vs Cost Energy
Policy matrix has been developed in order to determine if a country is sufficiently value-driven
in its energy policy.
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ObecneyeHne yCTOMYNBOIO Pa3BUTHS IHEPTETHUYECKUX CHUCTEM:
nepexojq 0T CTOMMOCTH K LIEHHOCTH

V. E. Iucbmennas” ?, I'. C. Tpunoabckas"

1)I/IHCTI/ITyT 9KOHOMHUKH ¥ nporHosupoBanust HAH Ykpaunsr (Kues, Ykpanna),
YHaupoHATEHEIHA TEXHIUECKHIT yHHUBepcuTeT YKpauHbl «KueBckuil MOIUTEXHUYECKUIA HHCTUTYT
nmenu Urops Cukopckoro» (Kues, Ykpanna)

Pedepar. DxoHOMHKM Mupa HaxXoAsATCA MOJ BIUSHUEM OBICTPOMEHSIOIIEHCS MOBECTKH MIHS
rI00aNbHOM SHEpPreTHueckoi MoauTHKU. [loHMMaHue MOCNIeNCTBUI SHEPreTUIECKUX TeHICHINI
B JOATOCPOYHOM MEPCIEKTUBE HMMECT pEIIAIoNIee 3HAYCHUE I NPHUHATHS OTBETCTBEHHBIX
1 000CHOBAHHBIX PEIICHHH 110 BOIPOCAM yCTOHIMBOCTH B OTHOIICHUH ITPpeoOpa3oBaHuUii, HE0OX0-
JMMBIX JUISl TIOBBIIICHHS HAaJ@KHOCTH SHEProcHabXeHus, 3QEKTHBHOCTH UCIIOIb30BaHUs Pecyp-
COB M MX JIOCTYITHOCTH, @ TaKXe I HUBEIMPOBAHUS SHEPIeTHUECKON OEIHOCTH M yMEHBILICHUS
HETaTUBHOT'O BO3JEHCTBUS HA OKPYKaloUIyIo cpeny. B Hacrosiee BpeMs mieHOBast (CTOMMOCTHAs)
KOHKYPEHTOCIIOCOOHOCTH TEXHOJIOTHII M IMIPOJYKTOB B Ka4€CTBE UX CIIOCOOHOCTH OTBEYATh TpeOo-
BaHMSIM YCTOHYMBOCTH CTAHOBHUTCSI BECOMBIM KPHTEPHEM IHpPH BHIOOPE MyTeil TeXHOIIOTHIECKOTO
pocTa i pa3paboTKH IKOHOMHUYECKHUX cTpaTerui. [lepexon k sHepreTHueckoil ycTOWYMBOCTH —
9TO TaK Ha3bIBaeMas «THXas» dSHepreTuueckas [pleBomronus win nepexon k 100%-My Bo300HOB-
JIsieMOMYy 3HeprocHaOkeHHIo. lMcmone3ys TeopuH CONMAIbHO-TEXHHYECKUX TpaHC(HOPMALUid,
YSI3BEMOCTH TIPH OLIEHKE YPOBHS SHEPreTHUeCKOl Oe30IacHOCTH, a TaKKe TEOPHIO yCTOHIMBOTO
pa3BUTHsA, JaHHAs CTaThs IIPU3BaHA COJACHCTBOBAaTb MOHUMAHUIO KYJBTYpPHBIX, MHCTUTYLHO-
HQJIBHBIX U MHHOBALIMOHHBIX MPEIIOCBUIOK Iepexoja K ycToH4MBOM sHepruu. OCHOBBIBAsACh HA
HCTOPHYECKUX MPHMepax, Mbl yTBEP)KAAeM, U4TO, HECMOTPsSI Ha KyJIbTypHbIE acCMEKTHI, HEPaBEH-
CTBO B 9HEPIreTUYECKHX PECYPCaX U CTPYKTYpE SHEpromnoTpedieHHs, reorpaduyeckoM IMOJIoxKe-
HUM ¥ pa3Mepe JI0XOAa Ha JyIly HaceJeHMs, LICHHOCTHAs, a He CTOMMOCTHas ¢unocopus mnpu
BBIOOpE IIyTeHl SHEpPreTHUecKOW MONUTHKH OOECIeuMBaeT YCTOWYMBHIE YHEPreTHYECKHE TpaHC-
¢dopmanmu. KiroueBbIMH pe3yibraTaMy SIBISICTCSl ONPEACNICHHE HPEIIIOCHUIOK yCTOHYMBOCTH
9HEPreTHYECKUX TpaHc(hopManuii, Cpeu KOTOPBIX: KyJIbTYPHbIE aCIIEKThI, HHHOBAI[MH M CKOPOCTh
JBIKEHHS TI0 KPUBBIM OOYUCHUS IPH BHEAPEHUM HOBBIX 3HEPTETHYECKHX TEXHOJOTHI, a Takxke
m1abI0Hbl SHEPTeTUUECKOH IMOJIUTHKH, NMPUMEHSEMBIE B CTPAHE, LIEHHOCTHBIE MPOTHB CTOMMO-
CTHBIX. MaTpuIia 3HepreTHIECcKOil MONUTUKH «IIEHHOCTh NPOTHB CTOMMOCTH» pa3paboTaHa c Iie-
JIBIO OIPEJICTICHNUs CTEIICHU IICHHOCTHOM OpUEHTAllUU 3HEPreTUYeCKON IONUTHKY TOW WM UHOH
CTpaHBbL.

KiioueBble c10Ba: SHEpreTHyecKas CUCTEMa; SHEpreTHueckas TpaHcopMauus; SHepreTuyecKas
YCTOHYNUBOCTD; LEHHOCTHAS KOHKYPEHTOCIIOCOOHOCTD; IICHHOCTHO-OPHEHTHPOBAHHAS IIOJIHUTHKA;
KOHKYPEHTOCHOCOOHOCTh, OCHOBaHHAs HA CTOMMOCTH; IIOJIMTHKA, OCHOBaHHAsI Ha CTOMMOCTH

s uurupoBanus: Ilucemennas, Y. E. ObecniedeHue yCTOHYMBOIO pa3sBUTHS SHEPreTHUECKUX
cucTeM: mepexox oT croumoctu k neHHoctd / Y. E. Ilucemennas, I'. C. Tpunonsckas // Ouepee-
muka. M3e. evicu. yued. 3asedenuii u suepe. ooveounenuit CHI. 2020. T. 63, Ne 1. C. 14-29.
https://doi.org/10.21122/1029-7448-2020-63-1-14-29

Introduction

Over the last two decades, the sustainable energy trend, being an important
prerequisite of sustainable economy, has been embracing more and more coun-
tries and regions of the world. Wind and solar photovoltaic sources globally
became the fastest growing sources of electricity. The energy access slowly
expands. The growing energy needs in fast growing countries are accompanied
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by green investments enhancement in these countries. Ecologic and climate con-
cerns are forcing a plenty of global players of energy markets to redesign their
energy systems and energy balances by means of sustainable energy transfor-
mations. However, the sustainable energy trend faces challenges all over the
world, but its density differs in a great way.

The primacy factor of energy transitions is often considered to be energy policy
that, in turn, is considered as a compromise of interests of global players (countries,
supranational formations or regional energy systems). Thus, the energy policy
as the “direction of actions, accepted and restrained by governments” [1], can be
entirely determined by geopolitics, i. e. by conformities of distribution and redis-
tribution of spheres of the different states and interstate associations. The gro-
wing influence on energy politics of “transnational governance networks invol-
ving non-state actors” should also be considered. This influence would increase
in the future and could take many forms [2].

IEA defined the following directions of world energy system development:
a) meeting of growing world demand on energy after growing profits and popu-
lation of developing countries; b) providing of access to energy for low-income
part of the planet’s population; c¢) reaching the aims of climate change mitiga-
tion, particularly the enhancement of renewables deployment [3]. However, with
the strengthening of integration processes, the efficiency of energy systems
as the ability to provide goods and services in environmentally sound way at
reasonable price is more and more based not on the efficiency within the limits
of the country economy, but on the compromise of interests of totality of energy
systems and energy markets of some countries, non-state intergovernmental
or supranational institutes.

The changes in world energy regional structure are accompanied by the
increase of the clean energy ratio as well as the increase of number of countries,
whose domestic supply ratio by an energy resource is less than 20 % and/or
decreasing promptly. The influence of regional energy disproportions on large
regions and developing countries creates the growing dependence on import
of energy resources and enhance resource competition. The tendencies of
providing the increase of demand and sustainable import of energy resources
in the world, the instability of energy prices form the considerable challenge
for the most world economies. As a result, the introduction of new resource
bases and transit facilities changes a geographic structure and world energy
markets rules, viz. the regions of production and consumption, strategic supply
pathways of energy resources, demand and supply disparity, legal and organiza-
tional principles of markets functioning. Such increasing tension makes a chal-
lenge to the performance of energy transitions towards sustainable energy sys-
tems [4]. And there is a need to understand the prerequisites of sustainable
energy transitions.

The aim of this paper is to consider energy transitions in terms of the values
they serve, which is a more comprehensive way of viewing them than only
a cost-benefit analysis.
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The main part

Acknowledging to sociotechnical transition theory [5] we can consider energy
policies and strategies (action plans of their implementation) as energy transi-
tions management. This includes: establishing prerequisites for their appearance;
their speeding up/slowing down, protecting existing ones; minimizing negative
externalities and social vulnerabilities of sociotechnical regimes changes; main-
taining optimal energy mix. Under such consideration, the success or failure
of policy implementation greatly depends on the differences in energy transi-
tions performance (the first key factor). Cherp et al. [6] stated that the diffe-
rences in performance of energy transitions (which are divided by three types,
viz. techno-economic, socio-technical and political) in different countries could
be explained by the performance of five mechanisms: a) states working with
incumbents for secure supply/demand balance; b) regimes gaining/losing
strengths from energy resources and infrastructure dynamics; c) regimes self-
reproduction through vested political interests; d) states nurturing niches as
a parallel strategy; e) cross-border technology diffusion and niche innovation.

Some researchers, e. g. Coenen, Benneworth & Truffer [7], make explicit
transition geographies, stressing the importance of regional factor of transitions
development. Thus, they also speak about the need of understanding the interna-
tional, translocal nature of transition dynamics. Moreover, in the comparative
analysis of energy transitions of key countries fulfilled by Hauff, Bode,
Neumann & Haslauer [8] the “global energy transitions” vs “country pattern
transitions” are discussed. They emphasize that despite the fact that the reasons,
management, development pathways, threats and perspectives of transitions
greatly differ from country to country, the main characteristics and processes
being “amazingly similar” in many countries.

Along with the performance, the second key factor of energy transitions
management is the vulnerability of energy systems under the influence of exter-
nalities, caused by energy transitions. Externalities are not necessarily negative,
being the part of the economic transaction concerned and emerging outside
the transaction. The vulnerability is “the exposure of vital energy systems to
risks” [2]. Even sustainable transitions are often being postponed, slowed down
or rejected to avoid negative externalities that could threaten the energy system
stability. The special policy measures to avoid negative externalities of energy
transitions are needed. For example, the 2016 increased shutdown of French
nuclear power units, accompanied by the coal- and oil-fueled power plants
closure has decreased base load capacity. In order to maintain the security of
supply in the energy transition, the state has to launch its capacity market [9].

Basing on sociotechnical transition theory, an energy transition is claimed
to be the energy-related sociotechnical regime shift. The question is how
the sociotechnical regime shift could be measured. Obviously, energy systems
can be estimated by the number of indexes: capacity, reserves, ecological
impact, by the structure of “fuel mix” etc. [10]. The energy policy of a country
on a number of energy resources or technologies can be defined by the dynamics



V. E. llucomennas, I'. C. Tpunonvckasn
18 OO0ecrie4eHUE YCTOWYMBOTO PA3BUTHUS SHEPTETHUECKUX CUCTEM. ..

of the set of indexes, such as: the structure of energy generation by technologies,
volumes of investments, volumes of subsidies, income by the types of activity,
rent volumes, barriers etc. However it complicates for the estimation or mode-
ling of energy transitions.

The third key factor of the managing of energy transitions is how much
the energy transition management leads to the change of energy sustainability
level, or the sustainability of energy transitions. The sustainability transitions
generally are described as the transitions that adapt societies and economies
to sustainable modes of production and consumption [7, 11, 12] (Coenen & Diaz
Lopez, 2009; Coenen, Benneworth & Truffer, 2012; Turnheim, Berkhout, Geels,
Hof, McMeekin, Nykvist, & van Vuuren, 2015). Also given are the common
examples of a sustainability transition: the decarbonization of energy and trans-
port systems, biodiversity and food security transitions, waste or water manage-
ment and urban development.

The question is could every transition towards the sustainable modes of energy
production, transformation and consumption (aka energy balance) be marked as
an energy sustainability transition. The energy sustainability Trilemma (energy
security; energy affordability; ecological sustainability), annually published by
World Energy Council (WEC), ranged countries by Energy Sustainability Index
(ESI) [13]. If an energy transition performance maintains the rise along all three
axes of Trilemma and the negative externalities are overcome by positive ones
in a way that the overall score grows, that is an energy sustainability transition.
Therefore, the transition to energy stability is a primary change in at least one
parameter of the energy balance, which is sufficient to cause a shift in the socio-
technical regime, leading to the overall effect of the rise within the Trilemma
of energy stability Trilemma.

WEC points out the similarities and the differences between first 10 ESI top-
ranked countries. Among the similarities are: high GDP income per capita,
OECD membership, postindustrial, service-based economies, more than 25 %
share of low- and zero-carbon power generation technologies [13]. The dif-
ferences are sufficient: energy mix, energy import dependence and reserves
levels, nuclear power share, geographic location. Is the economic welfare of
a country is necessary and enough to form the sustainable energy system? Or is
the energy sustainability the “engine” of economic welfare and overall sustain-
ability? By answering these questions, we aim to find out the prerequisites of
energy sustainability.

Cultural dimensions. Maintaining the sustainability is known to be the bal-
ancing between social welfare, economic growth and ecological imprint. When
speaking about the energy sustainability, we often mention sustainable energy
consumption and sustainable energy life style or behavior that has cultural roots.
Seeking for the cultural prerequisites for energy sustainability we compared
ESI top, middle and low-ranked countries’ cultural dimensions (Fig. 1a), using
G. Hofstede cultural dimensions theory [14] and the energy sustainability di-
mensions [13].
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Fig. 1. Selected Hofstede cultural dimensions (power distance; individualism;
long term orientation): a — 10 ESI top-, 4 middle- and 4 low-ranked countries;
b — OPEC countries (based on 2018 ESI and 2018 Hofstede publications) [13, 14]

The comparative analysis points out that high ESI rank of a country is accom-
panied by the achievement of high level of individualism and at least one of two
other dimensions: low power distance or high long-term orientation.

Why does high individualism have relation to the energy sustainability?
As G. Hofstede stated, “in societies with collectivism, common aims and welfare
are placed higher than personal ones” [14]. However, any of ESI top-ranked
countries has not high collectivism cultural dimension. The individualism level
above the middle helped them to form the societies with huge middle class
and low corruption. In terms of an energy system, this gave the prerequisites
for the development of highly effective energy systems with sufficient demand
side management, Smart Grid and high ratio of individual and middle-capacity
power units.

Low power distance is described as the following: “people strive to equalize
the distribution of power and demand justification for inequalities of power” [14].
This helps to establish the effective institutional structure and operation of govern-
mental and non-governmental institutions, which maintain the sustainable
energy goals achievement. Among the ESI top-ranked countries only France
has the power distance index higher than the mid-level (68 out of max
120 points).

High long-term orientation means achieving long-term goals and values re-
sults highly. Such time horizon view helps to meet the needs of a generation
without harming the next generations’ ability to meet their needs. This charac-
teristic ensures the vision of energy technology perspectives with the consi-
deration of the fossil fuels limited nature and the need of ecological sustain-
ability. Despite that, from the general point of view, this cultural parameter
seems to be primarily important for maintaining the sustainable energy; its high
level does not in itself guarantee high energy sustainability. For example, China
and Russia both have high level of long-term orientation (87 and 81 points
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respectively), but also have high power distance (80 and 93) and, the most
important, their individualism is rather low (20 and 39). Other cultural characte-
ristics (masculinity/femininity, uncertainty avoidance index; indulgence/restraint)
seem not to have the significant influence on ESI ranking.

From multi-level perspective (MLP) point of view on transitions [5], high
level of individualism prepares a ground for niche-innovations. Low level of
power distance helps to generate effective institutions. This prevents the
blocking and postponing of socio-technical landscape development by different
political lobbies, and then such development pressures the existing socio-
technical regime and creates opportunity windows for novelties. Long-term
perspective view via expectations and networks enhances the external influences
on niches resulting in the socio-technical regime shift.

Fig. 1b shows that OPEC countries, with their Hofstede dimensions similar to
low-ranked countries, are placed mostly in the middle of ESI rank, due to their high
energy security level. Rich resource base and high GDP favor the possibilities
to maintain the constituents of energy sustainability, but do not guarantee it. After
Michael Porter, more important is not the current stock of factors of a nation, but
the “rate end efficiency” or the intensity of their creation (or reimbursement),
upgrade and deployment [15]. And nowadays in some ESI middle-ranked countries,
e. g. in Saudi Arabia and Indonesia, such intensity is rising towards the sustainable
goals. The increasing energy demand and low oil prices forced Saudi Arabia to
declare plans to develop almost 10 GW of renewable energy by 2023 with up
to USD 50 bln investments to substitute 80,000 barrels of oil in domestic consump-
tion [16]. Indonesia, forced with demographic MLP growth, shows the progress
being the first among 20 fast-moving countries in energy access enhancement
with 4.3 % annual rate [17]. So, despite the cultural prerequisites and material
resources disparity of different countries of the world, their energy policies could
enhance Porter’s “rate end efficiency of factors”, that leads to more efficient, secure
and ecologically sustainable energy systems.

Innovations and movement along learning curves. Energy transitions are
not always innovation transitions. Do the energy sustainability transitions always
deal with innovations or could we solve the Trilemma and considerably enhance
energy security, energy affordability and ecological sustainability without no-
velties? Or such enhancement could be maintained only by extensive change
of energy mix and deployed energy technologies parity? The analysis of the effi-
ciency of energy policies proves that the considerable enhancement of Trilemma
is not possible without the innovation transitions [18-21].

Renewable energy technologies are among the best examples of energy
innovations. Renewables in general provide prospects of lower GHG emissions,
jobs creation, technological improvements, but some negative externalities as
well (such as structural unemployment, difficulties in maintaining of the load-
generation balance, the increase of a power system electricity prices due to the
feed-in tariffs and some other). Environmentally friendly technologies at their
early stages of deployment have higher prices than conventional energy techno-
logies, thus subsidies and other forms of support are needed to make environ-
mentally friendly technologies viable.
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Numerous studies [22—24] indicate that that early technology adoption brings
larger cost reduction in the long run. Over time technologies become more
mature, producers and users gain experience, economy of scale takes place, and
the level of direct and indirect support diminishes. Understanding of importance
of new technologies, measured by the level of direct financial and indirect
support by means of well-tailored regulatory energy policies, make countries not
only cost-driven, but also value-driven.

Let us consider some aspects of technology adoption. Such a consideration
makes us to apply to the learning curves. The concept of the learning curve,
in its turn, is a measure of cost decline for every doubling of capacity or of
energy output. The “learning curve” is a concept that describes the relationship
between cost and experience over a defined period [24]. The learning curve is
used to measure production efficiency and to forecast costs. The Learning Curve
Model states that for each doubling of the total quantity of items produced/
installed, costs decrease by a fixed proportion, the corresponding change in price
is a Progress ratio (Investopedia, 2019). In other words, learning curves show the
degree of technological developments spread. Understanding learning effects is
important to design sufficient support schemes [25], i. e. different learning rates
may result in refining support rates based on technology type. This, in its turn,
might affect the very structure of energy system of the country. For many
renewable energy sources, the learning factor varies between 0.11 and 0.95 (for
more mature technologies). A learning factor 0.9 means that costs will 10 % decline
when cumulative installed capacity increases twofold [26]. The learning rate
equals 100 minus a Progress ratio [27].

The largest number of learning rates studies so far has focused on photovol-
taics and onshore wind power plants. In case of renewables, one should bear
in mind that there is difference in industry producing equipment for renewables
and renewable electricity/heat. The first one could be easily traded in open
economics, while export/import of renewable electricity/heat is more difficult to
trace. Learning effects can be easier traced in case of new technologies, than for
existing technologies, because in order to reach the significant price reductions
the latter need to increase installed capacities in order of terawatts. That is why
the mean learning rate for coal technologies is 8.3 %, 15 % for natural gas
turbines, negative to 6 % for nuclear power plants [28].

In accordance with IEA, learning effect lead to decreasing of wind turbines
cost globally by a factor of 4 since 1980s, whereas since 2004 until 2007 they
have increased by 20-80 % in different countries because of high commodity
prices and insufficient turbines output. After 2007, the learning rate has
acelerated, and most of the progress in wind turbines is attributed to increase
in turbine size [29].

Modern renewable energy technologies show great possibilities for cost
reduction, especially in case of photovoltaics, by improving the materials for
modules output, transiting from crystalline silicon to dye sensitive solar cells
and thin films.
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In 2015, International Technology Roadmap for Photovoltaic (ITRPV) stated
that global PV module capacity at the end of 2015 was 60 GW, and the PV
learning rate was 21 % globally, which indicated high rate of technical learning.
The average crystalline-silicon PV module price declined from USD 0.62/W
in 2014 to USD 0.58/W in 2015, which corresponds to manufacturing capaci-
ties of 39.3 GW in 2014 and 50 GW in 2015 [9]. This learning factor for so-
lar PV remained relatively stable within the last 30 years in the majority of coun-
tries where solar PV is employed, whereas for wind power plants it varied
between 0.75 in the UK and 0.95 in Germany. Rubin et al. [30] defines the ave-
rage learning rate of 23 % for the PV in 1959-2011.

The installed capacity of wind farms globally was 539.2 GW (Global Cumu-
lative Installed Wind Power Capacity from 2001 to 2017) [31]. Growing demand
for wind farms led not to the market expansion, but to supply constraints
and slowing the market growth by 2014. Rapid market growth started in 2015,
growing up to 10 GW annually worldwide [26]. The average learning rate for
both onshore and offshore wind farms was 12 % [28].

For biomass-based electricity generation the learning rates was 11 %, in parti-
cular in case of fluidized bed combustion for combined heat and power and for
biogas output it was also 11 %. For specific bioenergy crop (sugarcane, corn,
and rapeseed) production the average learning rate was 32 %. For hydroelectric
technology the learning rate was 1.4 % [28]. However, Rubin et al. [30] states
that the developed countries such as USA have already used their sites for
hydroelectric, thus this technology has a good potential of deployment in deve-
loping countries. For geothermal technology, there is no single learning rate,
as this technology is largely dependent on-site characteristics (temperature,
chemical content of geothermal fluid etc.)

Ocean energy is an important, highly potential and predictable source of energy
without GNG emissions. There are several types of technologies allo-
wing obtaining energy from waves, tides and currents. Now the cost of energy
varies between 11-80 eurocents/(kW-h). The learning factor was projected to
be 10-15 % for offshore wave and 5-10 % for tidal stream [26].

Energy storage nowadays exists in a form of large pumped hydropower
and small industrial and commercial installations of battery storage. Large
pumped hydropower had a capacity of 149 GW globally in 2014, whereas
small installations had a cumulative capacity of 5 GW in 2014. In 2015-2016
and onwards, both significant technological improvements, installation of new
capacities as well as regulatory policy developments took place. Since 2010,
global learning rate for lithium-ion based technology in e-vehicles and elect-
ronics reached 22 %. Developed countries with liberalized energy markets
are encouraging the emergence of new storage technologies as a means of
decentralizing energy supply and developing additional service markets, such
as capacity or frequency markets.

In order to make RES technologies viable, significant investments are needed.
According to IEA, there are so called “learning investments”, i. e. “additional
costs for the technology compared with the cost of the same service from
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technologies which the market presently considers cost-efficient” [27]. Government-
funded RD&D usually make the part of these learning investments, which
directly affects the level of the countries innovation profiles. Environmentally
friendly technologies such as RES obtain financial support even for initially
expensive technologies which otherwise would not be deployed without consi-
derations for climate change mitigation (by means of feed-in tariffs, carbon
taxes, obligations and quotas etc.).

There are studies showing that technology development and diffusion are
global, thus no national boundaries are needed to define learning effects [32, 33].
However, the rate of increase of learning factor varies even between neighboring
countries, as well as the cost of technologies. Above mentioned learning factor
for wind power plants varies between 0.75 in the UK and 0.95 in Germany [26].
The first wind power units in UK were deployed in 1951, but only in 2007 along
with 20 % renewables EU policy they began to raise significantly. In Germany
this technology was introduced much later, but with Energiewende it has deve-
loped amazingly from 55 MW in 1990 to 27 GW in 2010 and 50 GW in 2016.
The cost of renewable energy technologies in France has been coming down
over the past few years, but not as fast as in other EU countries due to, inter alia,
the stable nuclear socio-technical regime [9].

The earlier an energy technology has been introduced in a country and the
more intensively its capacity has been installed, the faster is the movement
along learning curve. And it is the matter of an energy policy and value cons-
ciousness.

Value-driven vs cost-driven policies. In the XXI century, in the context of
the competition between energy resources, energy technologies, between the
producers of energy products within an energy technology and, at last, between
energy policies, the impact of non-cost and non-price criteria becomes more and
more determinative. It is rather a value competition. When a country’s energy
policy envisages more cost-intensive but also more widely applicable energy
access strategy, based on domestic and renewable resources, which would
enhance the energy security, this strategy is more value-driven. When someone
chooses the most energy-efficient, low-emission and socially responsible air-
cooling technology instead of the cheapest one, this is also the case.

Value competition is a form of non-price competition that envisages a gaining
not as the quantitative gaining (e. g. cost and income), but as the integrity
of quantitative, qualitative and cost parameters of a technology or a product,
which format its impact on the sustainability. The competition based on values
differs from Michael Porter’s competition based on innovations, because it is not
always innovation-based but always sustainability-based. The Indonesian Kero-
sene to Liquid Propane Gas Conversion Program, Bolivian exploration of new
natural gas resources and the natural gas to solid and biomass fueled boilers
replacement in a number of gas-dependent countries are far not novelties intro-
duction but all of them are energy sustainability improvements.

The competing technologies or products are compared not by their unique
value, but by their sustainable value, i. e. their ability to impact on the sus-
tainability.
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Based on this, we can understand that value-oriented energy policies, value
competitive energy technologies and energy products are those that can meet the
requirements of sustainable development.

Let us look at how countries choose their energy transition paths depending
on their geopolitical role. The belonging of a country to a group of countries
with common geopolitical interests determines its energy policy and strategy.
For considering of such belonging it is sufficient to use the matrix division
of countries after primary methods of providing the collective energy security,
that are concentrated on three basic groups of countries and regions after the
dominant type of activity: producers (net exporters), consumers (net importers)
and countries — transmitters of energy resources and on three basic groups of
countries after geopolitical belonging (Tab. 1).

Table 1

Matrix of balance of interests and energy policy of world energy market participants

The group OECD OPEC - Countries, which are not
of countries countries countries OECD and OPEC members

Net Development of standby hydrocarbon production capacities.
exporters |Preservation of national sovereignty and control of the strategic resources.
Consolidation on strategic export markets, providing of guarantees of sustainable
demand on exported energy resources.
Provision of investments in the development of resources production and infra-
structure.
Diversification of energy resources export markets.
Obtaining of shares of distributing and transport companies abroad.
Provision of reliable and uninterrupted transport and transit of exported energy
resources at reasonable prices.
Provision of security of energy infrastructure.
Search of an adequate level of energy investments impact on economy
and optimal volumes of energy resources export.
Decrease of energy intensity and providing of large-scale modernization
of productive funds with mass introduction of energy saving technologies
both from production and demand side

Achievement of balanced and economically Maximization of exported
reasonable price policy concerning energy products,|hydrocarbons cost

that provides the return of investments and
moderate norm of income, however such that does
not conduce to substantial reduction of demand

Transmitters |Selection of reservoirs (deposits) for storage of reserves of hydrocarbons with
the special legal state and special mechanism of bringing in to exploitation.
Provision of capital and financing of investments in a transit infrastructure.
Provision of safety of transit infrastructure

Maximization of transit rent
— - and cost of hydrocarbons
storage services




U. Ye. Pysmenna, G. S. Trypolska
Maintaining the Sustainable Energy Systems: Turning from Cost to Value 25

End Tab. 1

The group OECD OPEC countri Countries, which are not
of countries countries countries OECD and OPEC members

Net Development of standby hydrocarbon production capacities.
importers |Meeting the demand on imported energy, the guarantees of sufficient supply of
energy resources in a prospect.
Provision of energy infrastructure security, reliability and uninterruptness of energy
supplies.
Obtaining of production and supply control over energy resources from other
countries.
Diversification of energy products supply, diversification of their transportation
routes and variety of their suppliers.
Diversification of fuel and energy balances due to the development of production
of domestic (first of all renewable) energy resources.
Flexibility of production, reduction of energy intensity due to the introduction
of new technologies to decrease the dependence on the import of energy resources,
the development of market mechanisms of energy efficiency stimulation.
Provision of financing, mobilization of investment and new technologies
in the development and functioning of infrastructure.

Gradual liberalization and development of competition on energy markets
and markets of constrained services

Political stability|Provision of people’s basic needs in energy resources, forming of
of suppliers active demand on the energy sector services

Stabilization of |Balancing of price politics Provision with cheap energy
energy resources|in relation to energy resources resources for attaining

prices at accep- |at acceptable level for support maximum economy growth
table level for  |of competitiveness of the

support of economy

economy com-

petitiveness

The source: [4].

As it was mentioned above, rich resource base, favorable geographic location
and high income favor the possibilities to maintain the energy sustainability, but
do not guarantee it. Being in a one of the cells of the balance of interests matrix
forms the energy policy pattern of a country, but with the value extent. The extent
to which a country’s energy policy depends on cost retains its position in the
following matrix, the Cost and vs Value Matrix of energy policy (Tab. 2).

The value-driven energy policies maintain the equable movement towards
multiple sustainable goals, with simultaneous measures to overcome negative
externalities of transitions. Germany, facing the need to compensate backup
capacities during a period of energy transition to more than 50 % share of decen-
tralized power generators by 2033, decided to redesign the electricity market
structure and maintain the financing of larger-scale generation capacity to keep
the optimal level of system security. Also, Germany shared some reserve capaci-
ties between transmission system operators in order to reduce system reserve
requirements. The clear visibility of the need of fast development of renewables
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in France comes from their possible contribution to reduce the share of nuclear
energy from 78 % to 50 % by 2025. But it also needs the substantial redesigning
of power market and the investments into energy storage capacities.

Table 2

Cost vs Value Energy Policy Matrix (energy policy patterns)

Cost

Value

High ESI-ranked countries

Short-term economic profitability of energy
transitions is a mandatory condition (e. g.
France).

Higher-cost energy imports is replaced by
domestic carbon-intensive technologies

(e. g. UK)

Equable movement towards multiple
sustainable goals, with simultaneous
measures to overcome negative
externalities of transitions.

Dynamic and flexible energy investment
policies.

Carbon prices and commitments are
meaningful signals.

Energy market is able to provide secure
supply and demand to utilize high-priced
but low-carbon and renewable energy
resources and comparatively high-LCOE
energy technologies.

Fast moving along energy technologies
learning curves.

Regional and supranational interests

on energy markets rather than domestic:
solidarity principle

Middle ESI-ranked countries

and OPEC

Stabilization of energy prices at acceptable
level to support the economy.

Energy subsidies slow down energy efficien-
Cy progress.

Renewables are weakly penetrating TPES.
High entry costs prevent new energy markets
entrants.

Energy markets liberalization and deregula-
tion are slowed down or postponed because
of instable energy prices externality concerns.
Maximization of exported energy resources
prices instead of market coupling and integra-
tion (OPEC)

Understanding the need of strong support
of renewables to reduce of the nuclear
and fossil fuels share.

Attaining the progress in the rate towards
the achievement of sustainable energy
goals and commitments, while the potential
is still huge.

The progress in moving along energy
technologies learning curves differs
between countries and depends on

the transfer of technologies

Low ESI-ranked countries

Provision of cheap energy resources for
attaining maximum economic growth.
Maximization of exported energy resources
prices instead of market coupling and
integration.

Cost savings vs energy efficiency.

High costs of doing business for distributed
generation, which influences energy access.
No/small progress in moving along energy
technologies learning curves because of late
start and slow rates of deployment.
Postponing the achievement of the declared
sustainable energy goals and commitments

Domestic interests on energy markets
rather than regional and supranational.
Expanding the energy access

in the demographic growth concerns

The source: developed by the authors.
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Main results and discussion

The value-driven energy policy should envisage dynamic and flexible
investment policies for renewables, as well as for highly demand and frequency
responsible conventional power plants, and storages (for example, support poli-
cies for renewables in China, Germany etc.) Energy storages development is
highly investment-intensive and needs energy policies able to reduce investment
risks. The special energy storages funding programs are bundled with decentra-
lized and renewable power generation development programs (e. g. in Germany),
tax credits for the battery, kinetic, compressed air and hydro pumped storages
operators (e. g. in the USA).

Understanding the importance of early adoption of sustainable energy tech-
nologies encourages countries to support the ease of implementation and deve-
lopment of such technologies. The value-driven energy policy in many countries
provided faster movement along learning curves and guaranteed the decrease of
LCOE comparatively to common technologies in a short and medium term.

The innovation-based energy policies form the considerable transition from
cost to value competitiveness, becoming the ground for domestic novelties.
Some innovation growth programs are itself the action plans for achieving sus-
tainable development in 3 dimensions: economical, ecological and social by
means of: establishing knowledge resources (universities), complementing
a biased industrial structure towards diversification, business-to-business and
universities-to-business cooperation, etc. (good example is the Swedish innova-
tion doctrine). The development of knowledge in industrial and commercial
sectors (problem-oriented university research) is a so-called “third assignment”
for universities after education and research. The demand on energy-related
novelties mainly comes from the large energy utilities, but the demands placed by
global competition are also increasing the need for small and medium-sized energy-
related companies to cooperate with universities and research institutions.

CONCLUSIONS

1. To contribute to the understanding of cultural, institutional and innovation
prerequisites of sustainable energy transitions we addressed to F. Geels’ socio-
technical transition theory and considered energy policies as energy transitions
management. It envisages: establishing prerequisites for their appearance; their
speeding up/ slowing down, protecting existing ones; minimizing negative
externalities and social vulnerabilities of sociotechnical regimes changes; main-
taining optimal energy mix. We defined three key factors of the efficient energy
policy as an energy transitions management: energy transitions performance,
vulnerability of energy systems under their externalities and their influence on
the energy sustainability.

2. Acknowledging to G. Hofstede cultural dimensions theory and data, we
found that high Energy Sustainability Index rank of a country is accompanied
by the achievement of high level of individualism and at least one of two other
cultural dimensions: low power distance or high long-term orientation.
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3. We defined value-driven energy policies as those which are able to
respond to the sustainability demands. It also has been shown, that, despite
the different cultural prerequisites and material resources disparity of different
countries of the world, their value-driven energy policies could enhance Porter’s
“rate and efficiency of factors” and lead to more efficient, secure and ecologi-
cally sustainable energy systems. The extent of how much a country’s energy
policy is value-driven maintains a country’s position in the Cost vs Value
Energy Policy Matrix.

Abbreviations:

WEC — World Energy Council; ESI — Energy Sustainability Index; MLP — multi-
level perspective; GHG — greenhouse gas; ITRPV — International Technology Roadmap
for Photovoltaic; IEA — International Energy Agency; PV — photovoltaic; RD&D —
research, development and demonstration; RES — renewable energy sources; COE —
levelized cost of electricity.
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