- 3. С п о с о б распределения нагрузки между параллельно работающими агрегатами электростанций: а. с. 488300 СССР / Э. Б. Ахундов, Н. И. Бартош, И. А. Петрова // Бюл.изобрет. 1975. № 38.
- 4. К а л и х м а н, И. Л. Динамическое программирование в примерах и задачах / И. Л. Калихман, М. А. Войтенко. М.: Высш. шк., 1979. 215 с.
- 5. А р а к е л я н, Э. К. Влияние переменных нагрузок на экономичность работы газомазутных энергоблоков 150 и 200 МВт / Э. К. Аракелян, А. А. Мадоян, В. Б. Паймухин // Электрические станции. 1981. № 6. С. 24–27.
- 6. О б о п т и м а л ь н о й скорости изменения нагрузки на газомазутных энергоблоках 150, 200 МВт. Эксплуатационный циркулятор № Т-3/81. М.: СПО «Союзтехэнерго».

Поступила 10.10.2012

УДК 658.5.011.16

ОБНОВЛЕНИЕ КАК ИНСТРУМЕНТ РАЗВИТИЯ ПРОИЗВОДСТВА*

Канд. техн. наук, доц. ВОИНОВА С. А.

Одесская наииональная академия пишевых производств

Степень функционального совершенства технического объекта (ТО) характеризуется уровнем его технологической эффективности (ТЭ), уровнем составляющих: экологической, экономической и общетехнической. Новый ТО в момент ввода его в действие обладает наивысшейисходной $TЭ_{исх}$. С течением времени, вследствие износа ТО, его ТЭ снижается до уровня потенциальной $TЭ_{п}$. Фактическая (наблюдаемая) $TЭ_{ф}$ уступает $TЭ_{п}$, если алгоритм системы автоматического управления объектом соответствует исходному состоянию ТО [1, 2].

Высокопродуктивным методом повышения ТЭ ТО является его обновление. Обновление ТО — это, по существу, управляющее воздействие на него, улучшающее свойства ТО, повышающее его ТЭ. Аналогично обновление производства, его элементов — это прием, метод управления уровнем их ТЭ.

Обновление как действие формально таит в себе двоякий смысл и может быть представлено двумя формами, которые можно охарактеризовать следующим образом.

Форма «А»: обновление полное срочное. Его цель состоит в замене ТО, отработавшего ресурс работоспособности и перешедшего в предельное состояние, новым объектом.

Форма «Б» может быть представлена двумя вариантами. Цель первого варианта (Б1) – полного досрочного обновления – замена ТО, еще не отработавшего ресурс, но устаревшего, отстающего от действующих требований по уровню ТЭ, новым объектом. Цель второго варианта (Б2) – частич-

^{*} Печатается в порядке обсуждения.

ного (выборочного) обновления – состоит в обновлении ТО путем его модернизации, реконструкции или технического перевооружения.

Обновление «А» в соответствии с нормативным представлением подлежит реализации в оперативном, срочном порядке по достижении ТО предельного состояния. Этосвязано с крупным вложением ресурсов (для замены изношенного агрегата новым).

Обновление «Б1» может быть осуществлено в случае и после того, если и когда уровень эффективности ТО будет признан недостаточным, хотя объект еще располагает некоторым остаточным ресурсом ΔR . Это также связано с крупным вложением ресурсов (для замены еще не до предела изношенного объекта новым). Однако в течение периода времени, который понадобился бы прежнему объекту для расходования ΔR , новый объект будет работать с высоким уровнем эффективности, недоступным прежнему объекту. Выигрыш эффективности в объеме ΔR может превысить ущерб от недоиспользования ΔR прежним объектом. По существу, это досрочное обновление ТО.

Обновление «Б2» должно быть осуществлено в случае и после того, если и когда степень износа важного узла или детали ТО (еще располагающего остаточным ресурсом) достигла минимально допустимого уровня, в результате чего уровень эффективности объекта снизился до минимально допустимого значения.

Изложенное выше отражает обновление в узком смысле данного понятия, когда этому воздействию подвергают только ТО. В данном случае получают неполный позитивный эффект, так как обновленный ТО остался в прежних (устаревших, не обновленных) условиях его использования. Для получения полного эффекта необходимо обновить не только ТО, но и условия, всю сферу (все обстоятельства) его использования. То есть надо осуществить обновление в широком смысле этого понятия – комплексное.

Обновление полное дает эффект, существенно больший, чем обновление частичное (выборочное). Однако наибольший возможный (максимальный) эффект способно обеспечить осуществление комплексного обновления,которое представляет собой сложную многозвенную задачу проблемного характера, высокой размерности. В общем случае применение обновления рассмотренных форм и вариантов целесообразно, так как обусловливает повышение ТЭ обновляемого объекта.

В соответствии с теоретическими представлениями о сложной многогранной задаче обновления производства ее предметное пространство следует разделить на пять частей:

- 1) состояние оборудования;
- 2) режим работы оборудования;
- 3) профессиональная квалификация персонала;
- 4) социальная ответственность персонала;
- 5) система управления производством.

Структурно-логическая схема формирования эффекта обновления производства приведена на рис. 1. Основные элементы каждой части, подлежащие обновлению, представлены составляющими, перечисленными ниже.

Puc.1. Структурно-логическая схема формирования эффекта обновления производства

- 1. Состояние оборудования:
- схема технологического процесса предприятия, цеха, участка, агрегата;
 - состав комплекта элементов оборудования;
- степень совершенства конструктивно-компоновочных и других решений элементов оборудования;
- схемные и технические решения систем автоматического управления технологическим, энергетическим оборудованием и сетями разного назначения.
 - 2. Режим работы оборудования:
- условия использования оборудования, показатели работы; соответствие их прогнозу развития предприятия;
 - режимы функционирования предприятия, цеха, участка, агрегата;
- режим и регламент технического обслуживания (эксплуатационного и ремонтного) оборудования;
- уровень технологической (экологической, экономической и общетехнической) эффективности элементов производства.
 - 3. Профессиональная квалификация кадров:
 - концепция развития предприятия и его коллектива;
- уровень деловой квалификации и профессиональной компетентности кадров;
- •подход и система оценки профессиональных возможностейработника;
 - система оценки качества труда работников;
- структура и перспективы развития кадрового состава предприятия, цеха.
 - 4. Социальная ответственность персонала:
 - система социального обеспечения;
 - •междолжностные взаимоотношения;

- действующая система оценки качества труда работника, его инициативности и активности;
 - коллективизм в принятии решений;
 - психологическая обстановка в трудовом коллективе;
 - условия труда на предприятии;
- осведомленность сотрудников в отношении концепции развития отрасли, предприятия, изменения социальных условий сотрудников на предприятии:
 - структура и перспективы развития кадрового состава предприятия.
 - 5. Система управления производством:
- система организационно-технического (стратегического, тактического и оперативного) управления работой производства, его подразделений и элементов;
- автоматизированная система (организационно-технического оперативного) управления (АСУ) технологическим процессом предприятия.

Элементы каждой части могут быть подвергнуты обновлению полностью или выборочно.

Место и роль каждой части во влиянии их на формирование ТЭ ТОпоказанына рис. 2. Отражено также влияние степени износа ТО [1–4].

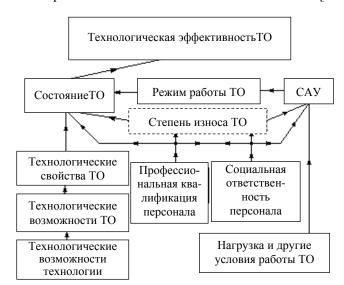


Рис. 2. Структурно-логическая схема взаимодействия факторов, влияющих на ТЭ ТО

Особого внимания заслуживает проблема управления процессом обновления, ибо его качество влияет на режим функционирования управляемого ТО, а режим определяет уровень эффективности протекающего в нем технологического процесса. Это характеризует значение систем автоматического управления (САУ) ТО.

Действующая в министерстве, в отрасли система управления предприятиями, действующие АСУ цехами, а в них САУ ТО образовали многоуровневую сложную систему управления производством. При этом АСУ каждого уровня управляет, воздействует на сферу управления всех менее высоких уровней.

В связи с этим необходимо отметить, что задача управления подчиненной сферой управления – поистине уникальная по важности, сложности

и деликатности. Затронутые вопросы состоят в сложном взаимовлиянии и взаимодействии. Удивительно то, что иногда это важное положение не встречает должных внимания и оценки.

Разумно построенное обновление любого содержания дает возможность получения позитивного результата. В общем случае получаемый эффект приводит к прямой, непосредственно осязаемой прибыли. Глубина обновления ТО может быть различной. При этом ее увеличение всегда целесообразно.

Решение задачи о наборе объектов обновления, характере, содержании, последовательности, графике его осуществления требует учесть действие множества факторов и обстоятельств, изменяющихся во времени. Необходим системно-комплексный углубленный подход к формированию, организации и осуществлению программы обновления производства и любых его элементов. Только в этом случае доступен высокий уровень результатов, возможно получение высшей удельной эффективности вложения ресурсов. Обновление — гибкий действенный инструмент управления уровнем ТЭ объектов. Особо следует отметить, что целесообразное, высококачественное, умелое владение им и приложение его к составляющим многоуровневой сферы управления является крупным резервом успешного развития производства.

В Украине на значительном числе предприятий, в частности пищевой промышленности, часть технологического оборудования и оборудования котельных завершила или завершает расходование расчетного ресурса работоспособности. В станционной энергетике более 80 % оборудования отработало расчетный ресурс [5]. Обновлениеподобных ТО приобрело характер актуальной организационно-научно-технической проблемы государственного значения. При надлежащей организации и успешном ее решении будет получен крупный технологический и экономический эффект. При этом особое значение имеет возможность получения крупного экологического эффекта.

Кроме того, обновление следует осуществлять с целью повышения, прежде всего, экологической эффективности ТО и производства в целом. Интересы повышения экономической и общетехнической эффективно сти имеют полчиненное значение, поэтому должны занимать вторую и последующие позиции. Ускоряющаяся деградация состояния окружающей среды (прежде всего, живой природы и человека) требует, вынуждает не «охранять природу», а все более решительно и активно спасать ее от гибели. На пути к оперативному решению задач данной сверхпроблемы ныне можно использовать единственно доступное в широком масштабе оружие – обновление существующего производства: в реальном пространстве «время – ресурсы – глобальный масштаб – психологическая инертность и узость понимания опасности». В этом пространстве другого доступного пути нет. Ведь воображаемое создание будущего какого-то принципиально нового, безвредного для природы производства окажется не чем иным, как комплексным обновлением его устаревшего варианта в глобальном масштабе, ибо другого пути просто не существует.

В плане изложенного существенное значение имеет качество управления экологической эффективностью ТО [6, 7]. Значительный интерес представляет вопрос о структуре расходов на повышение ТЭ производства [8]. Степень успеха в решении на предприятии задач обновления как системы является существенным показателем степени, уровня его технологической

эффективности и профессиональной компетентности, социальной ответственности, организационно-управленческой зрелости и мастерства руководства предприятия (или другой производственной структуры).

выводы

- 1. Обновление является непременным элементом и действенным инструментом развития производства. Составление и осуществление программы обновления независимо от масштабности ее объекта должны опираться на надлежащее, прежде всего, интеллектуальное, ресурсное обеспечение. Эффективность обновления тем значительнее, чем большее число уровней производственно-управленческой пирамиды занимает обновляемый объект.
- 2. Важными элементами кадровой проблемы являются задачи повышения уровня профессиональной квалификации и социальной ответственности персонала.
- 3. Степень успеха при осуществлении программы обновления любого участка производства во многом зависит от качества управления на всех используемых уровнях производственной пирамиды. Понимание лишь организационно-научно-технического аспекта управления недостаточно: его следует понимать и в социальном плане.
- 4. В процессе обновления воздействие и интересы сферы управления должны быть определяющими для предприятий и других производственных структур, независимо от форм собственности и уровня расположения их в пирамиде производства и управления. Важнейшим из результатов процесса обновления элементов и производства в целом является повышение их экологической эффективности.

ЛИТЕРАТУРА

- 1. В о і н о в а, С. О. Можливостіуправлінняефективністютехнічнихоб'єктів / С. О. Воінова // Труды 15-й Междунар. науч.-техн. конф. «Физические и компьютерные технологии», Харьков, 2–3 дек. 2009 г. Харьков: ХНПК «ФЭД», 2009. С. 393–395.
- 2. В о и н о в а, С. А. Особенности управления техническими объектами на траектории расходования расчетного ресурса / С. А. Воинова // Автоматизаціятехнологічних і бізнеспроцесів. –2010. № 1. С. 10–13.
- 3. В о и н о в а, С. А. Техническая геронтология. Потенциал влияния на эффективность функционирования технических объектов / С. А. Воинова // Материалы VIМеждунар. науч.-практ. конф. «Найновите постижения на европейската наука 2010», 17–25 июнь, 2010 г. Т. 20: Технологии. Физическа культура и спорт. София: «Бял ГРАД-БГ» ООД, 2010. С. 79–84
- 4. В о і н о в а, С. О. Технічнагеронтологія і якістьроботизношеногоустаткування / С. О. Воінова // Качество, стандартизация, контроль: теорія и практика: материалы VIМеждунар. науч.-практич. конф. 26–28 сент. 2006 г, Ялта. Киев: АТМ Украины, 2006. С. 14–16.
- 5. К о р ч е в о й, Ю. П. Новітнітехнологіївикористаннявугілля в енергетиці / Ю. П. Корчевой, Г. Г. Пивняк // Вісн. НАН України. 2006. № 2. С. 51–56.
- 6. В о і н о в а, С. О. Можливість управління скологічною характеристикою технічнихоб'єктів / С. О. Воінова // Физич. и компьютерные технологии // Тр. 11-го Междунар. науч.-техн. конф., 2–3 июня 2005 г. Харьков: ХНПК «ФЭД», 2005. С. 221–223.
- 7. В о и н о в а, С. А. Актуальные задачи управления экологической эффективностью технических объектов / С. А. Воинова // МатериалыМеждунар. конф. «Стратегия качества в промышленности и образования» (1–8 июня 2007 г., Варна, Болгария), Дніпропетровськ Варна: «Фортуна»// ТУ Варна. 2007. Т. 1. С. 102–104.
- 8. В о і н о в а, С. О. Взаемозв'язокекономічної й екологічноїефективностітехнічнихоб'єктів / С. О. Воінова // Труды 12-й Междунар. науч.-техн. конф. «Физич. и компьютерные технологии» 7–8 июня 2006 г., Харьков. Харьков: ХНПК «ФЭД», 2006. С. 188–190.

ОБОСНОВАНИЕ СХЕМЫ КОРРЕКТИРУЮЩЕГО КОНТУРА АВТОМАТИЧЕСКОЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ РАСХОДА ОБЩЕГО ВОЗДУХА КОТЛА

Канд. техн. наук, доц. НАЗАРОВ В. И., магистр.техн. наук БУРОВ А. Л.

Белорусский национальный технический университет

В настоящее время сжигание топлива с предельно низкими избытками воздуха является малозатратной, энергосберегающей технологией. В большинстве своем газомазутныекотлоагрегаты оснащаются простейшими одноконтурными автоматическими системами регулирования (АСР) «топливо – воздух». Реже это касается крупныхкотлоагрегатов, где используется двухконтурная каскадная АСР с корректирующим сигналом по концентрации кислорода в режимном сечении котла. Недостаток этого корректирующего сигнала был рассмотрен в [1], где определено, что наиболее приемлемым с точки зрения оптимизации процесса сжигания топлива является сигнал по химическому недожогу, приведенный к оксиду углерода СО.

Исследуем АСР расхода общего воздуха с различными корректирующими сигналами для оценки влияния их на динамические характеристики регулирования соотношения «топливо – воздух». Типовые структуры систем регулирования с различными корректирующими сигналамиприведенына рис.1, их математические модели –на рис.2. Путем математического моделирования были исследованы динамические характеристики этих систем при обработке возмущения по нагрузке котла (расходу топлива) и разряжения (при различных уровнях присосов воздуха в котел).

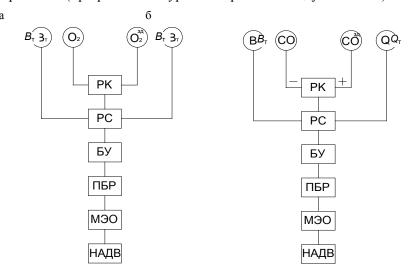


Рис. 1. Структурная схема автоматической системы регулирования расхода общего воздуха: a-c коррекцией по O_2 ; $\delta-т$ о же по CO; $B_{\tau}-$ сигнал по расходу топлива; $O_2(CO)-$ то же концентрации кислорода (оксида углерода) в уходящих газах; $O_2^{3R}(CO^{3R})-$ то же задания концентрации кислорода (оксида углерода) в уходящих газах; Q_B- то же по расходу общего воздуха; PK- регулятор корректирующий; PC- то же стабилизирующий; PK- блок управления; PK- пускатель бесконтактный реверсивный; PK- механизм электрический однооборотный; PK- регулирующий орган