.:

Среднегодовые данные о работе структурных частей моноблоков 300 МВт

	мер энерго-			Коэф	фициент	готовнос	ги <i>К</i> гот		
блока, структур- ная часть		1976—1980 гг.		1981—1985 гг.		1986—1990 гг.		1991—1995 гг.	
5	Турбина	0,9965	0,9887	0,9994	0,9950	1	0,9974	0,9954	0,9937
3	Котел	0,9922	0,9007	0,9956	0,9930	0,9974	0,9974	0,9983	0,9937
6	Турбина	0,9958	0,9430	0,9997	0,9927	0,9999	0,9982	0,9997	0,9980
	Котел	0,9470		0,9930		0,9983		0,9983	
7	Турбина	0,9997	0,9991	0,9984	0,9926	1	0,9963	1	0,9970
′	Котел	0,9994	0,9991	0,9942	0,9920	0,9963	0,9903	0,9970	0,9970
8	Турбина	0,9952	0,9938	0,9988	0,9966	0,9999	0,9977	0,9993	0,9946
	Котел	0,9986		0,9978		0,9978		0,9953	

ЛИТЕРАТУРА

- 1. Злепко В. Ф., Линкевич К. Р., Швецова Т. А. О надежности теплосилового оборудования электростанций // Энергетик. 1999. № 11. С. 21—22.
- 2. Т р у б и ц и н $\,$ В. И. Надежность электрической части электростанций. $\,$ М.: Изд-во МЭИ, 1993. 112 с.
 - 3. Гнеденко Б. В. Курс теории вероятностей. М.: Наука, 1988. 393 с.
- 4. Ковалев Г. Ф., Лебедев Л. М. Области использования и пределы применимости критерия N-I при формировании структуры и выборе параметров элементов ЭЭС. Иркутск, 1999. 69 с. (Препринт /Ин-т. систем энерг. Сиб. отд. РАН; №6).

Представлена кафедрой тепловых электрических станций

Поступила 7.02.2000

УЛК 518:517.392

ОБ ОДНОМ ПРЕДСТАВЛЕНИИ РЕШЕНИЯ ТРЕТЬЕЙ КРАЕВОЙ ЗАДАЧИ ТЕОРИИ ТЕПЛОПРОВОДНОСТИ С ПОМОЩЬЮ ПОЛИЛОГАРИФМОВ

Кандидаты физ.-мат. наук, доценты ЛАСЫЙ П. Г., МЕЛЕШКО И. Н.

Белорусская государственная политехническая академия

Рассмотрим следующую краевую задачу для уравнения Лапласа в круге радиуса R > 0:

$$\Delta u = (ru'_r)'_r + \frac{1}{r}u''_{\phi\phi} = 0; \tag{1}$$

$$u'_r(R,\varphi) + \alpha u(R,\varphi) = f(\varphi), \tag{2}$$

где $\alpha = \text{const} > 0$, $f(\phi)$ — функция, определенная на отрезке $[-\pi, \pi]$ и удовлетворяющая условию Липшица, т. е. существуют положительные постоянные L, γ такие, что

$$|f(\varphi_1) - f(\varphi_2)| \le L|\varphi_1 - \varphi_2|; \quad \varphi_1, \varphi_2 \in [-\pi, \pi]; \quad |\varphi_1 - \varphi_2| < \gamma.$$

Данная задача возникает, например, при исследовании стационарного распределения температуры в круге, на границе которого поддерживается неизменный во времени тепловой режим (2). Известно [1, с. 280; 2, с. 319], что она имеет единственное решение, которое может быть найдено с помощью теории потенциала [1, с. 281—287] или интеграла Шварца [3, с. 191].

В работе [4] рассмотрено приближенное решение более общей, чем (1)—(2) третьей краевой задачи, основанное на сведении этой задачи к сингулярному интегро-дифференциальному уравнению специального вида, для приближенного решения которого используются полилогарифмы [5] второго порядка.

В настоящей статье мы найдем точное, а затем и приближенное (с оценкой погрешности) решение краевой задачи (1)—(2) через полилогарифмы, базирующееся на представлении решения данной задачи в виде ряда Фурье. Достоинством полученной приближенной формулы является ее сравнительная простота и отсутствие квадратур.

Разложим граничную функцию $f(\varphi)$ в ряд Фурье

$$f(\varphi) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\varphi + b_k \sin k\varphi).$$

Легко показать, что решением поставленной задачи является функция

$$u(r,\varphi) = \frac{1}{\alpha} \left(\frac{a_0}{2} + \beta \sum_{k=1}^{\infty} \frac{1}{k+\beta} \left(\frac{r}{R} \right)^k (a_k \cos k\varphi + b_k \sin k\varphi) \right),$$

где $\beta = \alpha R$ и ряд в правой части равномерно сходится при $r \leq R$. Учитывая, что $a_0 = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(\phi) d\phi$ и для любого натурального k:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \cos k\phi d\phi; \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \sin k\phi d\phi,$$

решение $u(r, \phi)$ можно записать в виде

$$u(r,\varphi) = \frac{1}{\alpha\pi} \int_{-\pi}^{\pi} f(\varphi) \left(\frac{1}{2} + \beta \sum_{k=1}^{\infty} \frac{1}{k+\beta} \left(\frac{r}{R} \right)^k \cos k(\varphi - \varphi) \right) d\varphi.$$

Так как при $\beta=\alpha R<1$ $\frac{1}{k+\beta}=\frac{1}{k}\sum_{l=0}^{\infty}(-1)^l\left(\frac{\beta}{k}\right)^l$ при любом натуральном k , то

$$\sum_{k=1}^{\infty} \frac{1}{k+\beta} \left(\frac{r}{R}\right)^k \cos k(\phi - \phi) = \sum_{k=1}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^l}{k} \left(\frac{r}{R}\right)^k \left(\frac{\beta}{k}\right)^l \cos k(\phi - \phi) =$$

$$= \sum_{l=0}^{\infty} (-\beta)^l \sum_{k=1}^{\infty} \left(\frac{r}{R}\right)^k \frac{\cos k(\phi - \phi)}{k^{l+1}} = \sum_{l=1}^{\infty} (-\beta)^{l-1} \operatorname{Re} L^l \left(\frac{r}{R} e^{i(\phi - \phi)}\right),$$

где $L^l(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^l}$ — полилогарифм [5] порядка l. Следовательно, через полилогарифмы решение задачи (1)—(2) представляется в виде

$$u(r,\varphi) = \frac{1}{\alpha\pi} \int_{-\pi}^{\pi} f(\phi) \left(\frac{1}{2} + \beta \sum_{l=1}^{\infty} (-\beta)^{l-1} \operatorname{Re} L^{l} \left(\frac{r}{R} e^{i(\phi - \varphi)} \right) \right) d\phi . \tag{3}$$

Найдем приближенную формулу, позволяющую вычислять решение в любой точке круга с а priori заданной точностью. Разобьем отрезок $[-\pi, \pi]$ на n частичных отрезков точками $\phi_m = -\pi + mh$; $m = \overline{1,n-1}$; $h = \frac{2\pi}{n}$ и на каждом из частичных интервалов $[\phi_m, \phi_{m+1}), m = \overline{0,n-1}$ заменим функцию $f(\phi)$ ее значением в средней точке $f(\phi_m + h/2)$. Тогда, ограничившись p-й ($p \ge 2$) частичной суммой для ряда в представлении (3), получим

$$u(r,\varphi) \approx \frac{1}{\alpha\pi} \sum_{m=0}^{n-1} f(\varphi_m + h/2) \int_{\varphi_m}^{\varphi_{m+1}} \left(\frac{1}{2} + \beta \sum_{l=1}^{p-1} (-\beta)^{l-1} \operatorname{Re} L^l \left(\frac{r}{R} e^{i(\varphi - \varphi)} \right) \right) d\varphi =$$

$$= \frac{1}{\alpha \pi} \sum_{m=0}^{n-1} f(\varphi_m + h/2) \left(\frac{h}{2} + \beta \sum_{l=2}^{p} (-\beta)^{l-2} \operatorname{Im} \left(L^l \left(\frac{r}{R} e^{i(\varphi_{m+1} - \varphi)} \right) - L^l \left(\frac{r}{R} e^{i(\varphi_m - \varphi)} \right) \right) \right).$$

Таким образом, приближенное решение задачи (1)—(2) можно найти по следующей формуле:

$$u_{n}^{(p)}(r,\varphi) = \frac{1}{\alpha\pi} \sum_{m=0}^{n-1} f\left(\varphi_{m} + \frac{h}{2}\right) \left(\frac{h}{2} + \beta \sum_{l=2}^{p} (-\beta)^{l-2} \operatorname{Im}\left(L'\left(\frac{r}{R}e^{i(\varphi_{m+1}-\varphi)}\right) - L'\left(\frac{r}{R}e^{i(\varphi_{m}-\varphi)}\right)\right)\right)$$
(4)

Докажем, что погрешность приближенной формулы (4) имеет порядок малости $O(h^{\lambda}),\ 0<\lambda<1$ относительно шага разбиения h при подходящем выборе p, т. е. $u(r,\varphi)-u_n^{(p)}(r,\varphi)=O(h^{\lambda})$ равномерно в круге $r\leq R$. Для этого убедимся сначала, что $u(r,\varphi)-u_n(r,\varphi)=O(h^{\lambda}),\ r\leq R$, где

$$u_{n}(r,\varphi) = \frac{1}{\alpha\pi} \sum_{m=0}^{n-1} f\left(\varphi_{m} + \frac{h}{2}\right) \left(\frac{h}{2} + \beta \sum_{l=2}^{\infty} (-\beta)^{l-2} \operatorname{Im}\left(L^{l}\left(\frac{r}{R}e^{i(\varphi_{m+1}-\varphi)}\right) - L^{l}\left(\frac{r}{R}e^{i(\varphi_{m}-\varphi)}\right)\right)\right). \tag{5}$$

Действительно, воспользовавшись формулами (3) и (5) получим:

$$u(r,\varphi) - u_n(r,\varphi) = \frac{1}{\alpha\pi} \sum_{m=0}^{n-1} \int_{\varphi_m}^{\varphi_{m+1}} (f(\varphi_m + h/2) - f(\varphi)) \left(\frac{1}{2} + \beta \sum_{l=1}^{\infty} (-\beta)^{l-1} \operatorname{Re} L^l \left(\frac{r}{R} e^{i(\varphi - \varphi)} \right) \right) d\varphi.$$
(6)

Для дальнейших оценок нам понадобится следующее утверждение.

Лемма. Для действительной части полилогарифма первого порядка справедлива следующая равномерная по $0 \le r \le 1$ интегральная оценка:

$$\left| \int_{\eta}^{\xi} \operatorname{Re} L^{1}(re^{i\varphi}) d\varphi \right| \leq M \left| \xi - \eta \right|^{\lambda}, \tag{7}$$

где ξ , $\eta \in [-\pi, \pi]$, M > 0, $0 < \lambda < 1$ $u \mid \xi - \eta \mid$ достаточно мало.

Доказательство. По определению полилогарифма $L^1(z)$

$$\operatorname{Re} L^{1}(re^{i\varphi}) = \sum_{k=1}^{\infty} \frac{r^{k}}{k} \cos k\varphi = -\operatorname{Re} \ln(1 - re^{i\varphi}) = -\frac{1}{2} \ln(1 - 2r \cos \varphi + r^{2}).$$

При $r>2\cos \varphi$ справедливость оценки (7) следует из неравенства $1<1-2r\cos \varphi+r^2\leq 4$, так как

$$\left|\int_{\eta}^{\xi} \operatorname{Re} L^{1}(re^{i\varphi})d\varphi\right| = \frac{1}{2} \left|\int_{\xi}^{\eta} \ln(1 - 2r\cos\varphi + r^{2})d\varphi\right| \leq \ln 2|\xi - \eta|.$$

Если же $r \le 2\cos \varphi$, то, воспользовавшись неравенством $\sin^2 \varphi \le 1 - 2r\cos \varphi + r^2 \le 1$, получим

$$\left| \int_{\eta}^{\xi} \operatorname{Re} L^{1}(re^{i\varphi}) d\varphi \right| = \frac{1}{2} \left| \int_{\xi}^{\eta} \ln(1 - 2r\cos\varphi + r^{2}) d\varphi \right| \le \left| \int_{\xi}^{\eta} \ln|\sin\varphi| d\varphi \right|. \tag{8}$$

Докажем требуемую оценку вблизи интегрируемой особенности $\phi=0$, так как вне любой окрестности нуля данная функция заведомо удовлетворяет неравенству (7). Предположим для определенности, что $0 \le \eta \le \xi \le 1$. Так как $\lim_{\phi \to +0} \frac{\ln \sin \phi}{\ln \phi} = 1$, то из неравенства (8) следует, что для доказательства оценки (7) следует проверить ее для интеграла $\int\limits_{\eta}^{\xi} \ln \phi \, d\phi$. Обозначая $\theta=\xi-\eta$, после интегрирования получим

$$\int_{\eta}^{\xi} \ln \varphi \, d\varphi = (\eta + \theta) \ln \frac{\eta + \theta}{e} - \eta \ln \frac{\eta}{e} = \theta \ln \left(1 + \frac{\theta}{\eta} \right)^{\frac{\eta}{\theta}} + \theta \ln \frac{\eta + \theta}{e}.$$

При сделанных предположениях: $0 < \ln\left(1 + \frac{\theta}{\eta}\right)^{\frac{\eta}{\theta}} < 1; \left|\ln\frac{\eta + \theta}{e}\right| \le -\ln\frac{\theta}{e}$,

поэтому $\left|\int\limits_{\eta}^{\xi}\ln\phi\,d\phi\right|\leq\theta\left(1-\ln\frac{\theta}{e}\right)\leq M\!\!\!/\,\theta^{\lambda}$, откуда, ввиду (8), и следует (7).

Лемма доказана.

Для того чтобы продолжить оценку погрешности решения, предположим также, что функция $f(\phi)$ — кусочно-монотонна на отрезке $[-\pi, \pi]$, т. е. этот отрезок можно разбить на конечное число отрезков, внутри которых данная функция является монотонной.

Запишем теперь каждый из интегралов в правой части формулы (6) в виде

$$\beta \int_{\varphi_{m}}^{\varphi_{m+1}} (f(\varphi_{m} + h/2) - f(\varphi)) \operatorname{Re} L^{1}\left(\frac{r}{R}e^{i(\varphi-\varphi)}\right) d\varphi + \int_{\varphi_{m}}^{\varphi_{m+1}} (f(\varphi_{m} + h/2) - f(\varphi)) \left(\frac{1}{2} + \beta \sum_{l=2}^{\infty} (-\beta)^{l-1} \operatorname{Re} L^{l}\left(\frac{r}{R}e^{i(\varphi-\varphi)}\right)\right) d\varphi.$$

$$(9)$$

К первому из них (обозначим его через $I_m^{(1)}$) применим формулу Бонне [6, с. 605], разбив, если потребуется, отрезок [ϕ_m , ϕ_{m+1}] на отрезки, внутри которых функция $f(\phi)$ монотонна. Для простоты предположим, что функция монотонна на всем отрезке [ϕ_m , ϕ_{m+1}]. В результате получим

$$\int_{\varphi_{m}}^{\varphi_{m+1}} (f(\varphi_{m} + h/2) - f(\varphi)) \operatorname{Re} L^{1}\left(\frac{r}{R}e^{i(\varphi-\varphi)}\right) d\varphi = (f(\varphi_{m} + h/2) - f(\varphi_{m})) \times \int_{\varphi_{m}}^{\varphi_{m}} \operatorname{Re} L^{1}\left(\frac{r}{R}e^{i(\varphi-\varphi)}\right) d\varphi + (f(\varphi_{m} + h/2) - f(\varphi_{m+1})) \int_{\varphi_{m}}^{\varphi_{m+1}} \operatorname{Re} L^{1}\left(\frac{r}{R}e^{i(\varphi-\varphi)}\right) d\varphi,$$

где $\phi_m \in [\phi_m, \phi_{m+1}]$. Отсюда, учитывая липшициевость функции $f(\phi)$ и доказанную лемму, найдем

$$\left|I_m^{(1)}\right| \leq LMh^{\lambda+1}.$$

Второй из интегралов ($I_m^{(2)}$) в выражении (9), вследствие равномерной по r, ϕ ограниченности функции $\sum_{l=2}^{\infty} (-\beta)^{l-1} \operatorname{Re} L^l \left(\frac{r}{R} e^{i(\phi-\phi)} \right)$, удовлетворяет неравенству

$$\left|I_m^{(2)}\right| \leq \frac{1}{2} KLh^2,$$

где

$$K = \frac{1}{2} + \beta \sup_{\substack{r \in [0,R] \\ \varphi \in [-\pi,\pi]}} \left| \sum_{l=2}^{\infty} (-\beta)^{l-1} \operatorname{Re} L^{l} \left(\frac{r}{R} e^{i(\phi - \varphi)} \right) \right|.$$

Объединяя обе полученные оценки, найдем из (9)

$$\left| \beta I_m^{(1)} + I_m^{(2)} \right| \le \frac{1}{2} L (2M\beta + K) h^{\lambda+1}$$
 при $h < 1$.

Возвращаясь к (6), получим следующую оценку погрешности:

$$|u(r,\varphi) - u_n(r,\varphi)| \le \frac{1}{\alpha \pi} \sum_{m=0}^{n-1} |\beta I_m^{(1)} + I_m^{(2)}| \le \frac{L(2M\beta + K)}{\alpha} h^{\lambda},$$
 (10)

т. е.

$$u(r,\varphi) - u_n(r,\varphi) = O(h^{\lambda}).$$

Осталось заметить, что

$$u_n(r,\varphi) - u_n^{(p)}(r,\varphi) = O(h), \ r \le R.$$
 (11)

Действительно, используя (4) и (5), будем иметь:

$$u_n(r,\varphi) - u_n^{(p)}(r,\varphi) = \frac{R}{\pi} \sum_{m=0}^{n-1} f(\varphi_m + h/2) \times$$

$$\times \sum_{l=p+1}^{\infty} (-\beta)^{l-2} \operatorname{Im} \left(L^l \left(\frac{r}{R} e^{i(\varphi_{m+1} - \varphi)} \right) - L^l \left(\frac{r}{R} e^{i(\varphi_m - \varphi)} \right) \right).$$

Отсюда, ввиду ограниченности функции $f(\phi)$ и равномерной ограниченности полилогарифмов $L^l(z)$ в единичном круге при $l \ge 2$, следует

$$\left|u_n(r,\varphi) - u_n^{(p)}(r,\varphi)\right| \le \frac{2R}{\pi} \sum_{m=0}^{n-1} A \sum_{l=p+1}^{\infty} \beta^{l-2} B = \frac{4RAB\beta^{p-1}}{h(1-\beta)},$$

где $A=\max_{\varphi\in[-\pi,\pi]} |f(\varphi)|$; $B=\sup_{\substack{|z|\leq 1\\ z\geq 3}} |L'(z)|$. Выбрав теперь число p из условия

$$p \ge \frac{\ln(\beta h^2)}{\ln \beta}$$
, получим

$$\left|u_n(r,\varphi)-u_n^{(p)}(r,\varphi)\right|\leq \frac{4RAB}{1-\beta}h,$$

т. е. справедлива оценка (11). Из соотношений (10), (11) немедленно следует требуемая оценка, т. е.

$$u(r,\varphi) - u_n^{(p)}(r,\varphi) = O(h^{\lambda}), r \le R$$
 при $p \ge \frac{\ln(\beta h^2)}{\ln \beta}$. (12)

Таким образом, доказано следующее утверждение.

Теорема. Если граничная функция $f(\varphi)$ в краевой задаче (1)—(2) кусочно-монотонна на отрезке $[-\pi,\pi]$ и удовлетворяет условию Липшица, то при $\alpha<\frac{1}{R}$ точное решение этой задачи можно найти по (3), а приближенное — по (4), причем допускаемая при этом погрешность вычислений имеет порядок малости $O(h^{\lambda})$, $\lambda \in (0,1)$ относительно шага h(12).

Приведем пример решения краевой задачи (1)—(2) по формуле (4). **Пример 1.** Решим приближенно краевую задачу с граничным условием

$$u'_r(1,\varphi) + 0.5u(1,\varphi) = N^3(\varphi) + 0.5N^4(\varphi)$$
,

где
$$N^3(\phi) = \operatorname{Im} L^3(e^{i\phi}) = \frac{1}{12} \phi(\pi - |\phi|)(2\pi - |\phi|); \ N^4(\phi) = \operatorname{Im} L^4(e^{i\phi}).$$

Как нетрудно проверить, точным решением данной задачи является функция

$$u(r,\varphi) = \operatorname{Im} L^4(re^{i\varphi}).$$

Ввиду того, что в данном случае $f(-\phi) = -f(\phi)$, достаточно ограничиться интервалом $(0,\pi)$. Вычисления по формуле (4) при n=20; p=10 дают приближенные значения для $u(r,\phi)$, представленные в табл 1.

Таблица 1

r	$u(r, \pi/4)$	$u_{20}^{(10)}(r,\pi/4)$	$u(r, \pi/2)$	$u_{20}^{(10)}(r,\pi/2)$	$u(r, 3\pi/4)$	$u_{20}^{(10)}(r,3\pi/4)$
0,1	0,071344	0,071183	0,099988	0,099774	0,070094	0,069953
0,2	0,143991	0,143646	0,199902	0,199478	0,138991	0,138726
0,3	0,217989	0,217439	0,29967	0,29904	0,20674	0,206369
0,4	0,293386	0,292605	0,399226	0,398396	0,273393	0,272928
0,5	0,37022	0,369183	0,498504	0,497484	0,338994	0,338451
0,6	0,448519	0,447202	0,597447	0,596247	0,40359	0,402981
0,7	0,528297	0,526678	0,696005	0,694633	0,467223	0,466559
0,8	0,609547	0,607633	0,794132	0,792581	0,529932	0,529234
0,9	0,692246	0,690162	0,891789	0,88996	0,591756	0,591086
1,0	0,776347	0,774443	0,988945	0,986412	0,652729	0,652238

Пример 2. Проведем аналогичные вычисления для краевой задачи

$$u'_r(1,\varphi) + 0.5u(1,\varphi) = \sin^3 \varphi$$

с точным решением $u(r,\varphi) = \frac{r}{2} \left(\sin \varphi - \frac{1}{7} r^2 \sin 3\varphi \right).$

В результате получим значения (табл. 2).

Таблица 2

r	$u(r, \pi/4)$	$u_{20}^{(10)}(r,\pi/4)$	$u(r, \pi/2)$	$u_{20}^{(10)}(r,\pi/2)$
0,1	0,035305	0,035523	0,050071	0,049961
0,2	0,070307	0,070169	0,100571	0,100334
0,3	0,104702	0,104523	0,151929	0,151534
0,4	0,138189	0,138001	0,204571 ·	0,203972
0,5	0,170463	0,170312	0,258929	0,258061
0,6	0,201222	0,201163	0,315429	0,314215
0,7	0,230163	0,230259	0,3745	0,37284
0,8	0,256983	0,257294	0,436571	0,434307
0,9	0,281378	0,281903	0,502071	0,498806
1,0	0,303046	0,303663	0,571429	0,565988

Как следует из приведенных таблиц, уже при небольших значениях n, p формула (4) дает достаточно хорошие приближения решения данных задач.

ЛИТЕРАТУРА

- 1. Гю н т е р Н. М. Теория потенциала и ее применение к основным задачам математической физики. М.: ГИТТЛ, 1953. 415 с.
- 2. С м и р н о в В. И. Курс высшей математики. М.: Наука, 1981. Т. 4, ч. 2. 550 с.
 - 3. С м и р н о в В. И. Курс высшей математики. М.: Наука, 1969. Т. 3. 672 с.
- 4. М е л е ш к о И. Н. Приближенное решение одной плоской задачи теории теплопроводности для круга с граничными условиями третьего рода // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). 1997. № 1—2. С. 79—83.
- 5. Пых теев Г. Н., Мелешко И. Н. Полилогарифмы, их свойства и методы вычисления. Мн.: Изд-во БГУ, 1976.-68 с.
- 6. Φ и х т е н г о л ь ц Γ . М. Курс дифференциального и интегрального исчисления. М.: Φ изматгиз, 1962. Т. 2. 807 с.

Представлена кафедрой высшей математики № 2

Поступила 15.06.1999