ИССЛЕДОВАНИЕ ОТКЛОНЕНИЯ НАПРЯЖЕНИЯ ПРИ РЕЗЕРВИРОВАНИИ ВЛ 6–10 кВ

Канд. техн. наук, доц. КУЦЕНКО Г. Ф., асп. ПАРФЕНОВ А. А.

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Качество электрической энергии – важный фактор, определяющий эксплуатационную надежность электрооборудования, и характеризуют его такие показатели, как отклонение напряжения и несимметрия напряжения основной частоты. Под отклонением напряжения понимают достаточно медленные изменения напряжения, равные разности между фактическим значением напряжения в точке сети и номинальной его величиной. Отклонения напряжения от номинального (%) определяют по формуле

$$\delta U = \frac{U - U_{\text{HOM}}}{U_{\text{HOM}}} \cdot 100 \,, \tag{1}$$

где U – действительное напряжение; $U_{\text{ном}}$ – номинальное напряжение сети.

Отклонения напряжения заметно влияют на работу асинхронных двигателей. При изменении напряжения питающей сети изменяется механическая характеристика, представляющая собой зависимость вращающего момента электродвигателя от частоты вращения или скольжения.

Изменение напряжения, особенно сверх допустимого, оказывает значительное влияние на работу различных потребителей. Весьма чувствительны к этому осветительные приборы. При повышении напряжения сверх номинального резко снижается срок службы ламп накаливания, а при понижении – их световой поток. Для люминесцентных ламп срок службы сокращается как при повышении, так и при понижении напряжения.

Снижение напряжения приводит к понижению мощности и, следовательно, к ухудшению работы (невозможности работы) электронагревательных приборов, компьютеров и оргтехники, телевизоров, холодильников и других бытовых приборов.

В данной статье исследуются процессы отклонения напряжения и возможность взаимного резервирования воздушных линий электропередачи 6–10 кВ при аварийном отключении питания какой-либо линии. Исследования проведены на моделях ВЛ 6–10 кВ, построенных по результатам вероятностно-статистического исследования воздушных линий электропередачи РУП «Гомельэнерго» [1]. В ходе исследований 200 линий электропередачи было построено семь моделей ВЛ 6–10 кВ. Критерием для отбора линии и отнесения их к той или иной модели считался такой параметр, как общая протяженность ВЛ. Модель представляет схему линии определенной конфигурации со своими структурой и параметрами, которые являются математическим ожиданием параметров линий, относящихся к той или иной модели. В табл. 1 представлены их основные характеристики.

Параметры линий 6-10 кВ

№ модели	Суммарная длина линии L_{10} , км	Общее число ответвлений $n_{\rm O}$, шт.	Число потребителей ТП 10/0,4 кВ и _{тп} , шт.	Суммарная установленная мощность ТП $10/0,4~{ m kB}~S_{\Sigma \tau \pi}$, MB·A
1	2,11	2	3	0,92
2	3,61	3	4	0,56 ·
3	7,11	5	7	`1,31 •
4	9,68	4	8	1,68
5	18,98	8	12	1,87
6	20,88	8	11	1,83
7	28,26	12	19	2,89

Анализ отклонения напряжения был проведен для различных значений коэффициентов загрузки k_3 всех трансформаторов линии от 0,35 до 1,0 с интервалом 0,05. В табл. 2 и 3 приведены значения отклонения напряжения лишь при двух коэффициентах загрузки трансформаторов: 1,0 и 0,35. Эти значения коэффициентов загрузки соответствуют, согласно суточному графику нагрузки, часам максимальной и минимальной нагрузок [2].

Серым цветом отмечены отклонения напряжения в наиболее удаленной точке линии.

1-я модель														
Номер узла	1		•	2			3		3-∏2		3-П3			
k_3 1,0 δU ,	0,3	4		0,50		0,	71		0,78		0,73			
0,35 %						0,	25		0,27		0,26			
2-я модель														
Номер узла	1		. 2		3		4		2	4-П3	3	-П3		
k_3 $1,0$ δU	0,2	8	0,45		0,53	0,	57	0,57	'	0,55	(),70		
0,35 %	0,10		0,16		0,18	. 0,	20	0,20)	0,19	(),25		
					3-я	моделі	•							
Номер узла	1 2		3	4	4-П5	5	6	6-П3	6-П4	7	7-П6	7-П7		
k_3 $1,0$ δU	1,22	1,91	2,15	2,29	2,33	2,49	2,19	2,23	2,27	2,62	2,85	3,08		
0,35 %	0,43	0,67	0,75	0,80	0,82	0,87	0,77	0,78	0,80	0,92	1,00	1,08		
					4-я	модели	•				•			
Номер узла	1	2	3	4	5	5-П6	6	6-П7	7	8	8-П4	8-П5		
k_3 $1,0$ δU	1,41	1,41 3,20 3,81		4,31	4,78	4,90	4,95	5,01	5,16	4,43	4,49	4,47		
0,35 %	0,49 1,12		1,33	1,51	1,67	1,72	1,73	1,75	1,81	1,55	1,57	1,57		

Γ										5-я м	одел	њ									
	Ном узл	•	1	2	3	4	5	6	6- П9	7	8	8- П1	100	9	10	10- П4	10- П5	11	11- П6	12	12- П7
Γ,	1,0	δU,	3,37	4,73	6,55	8,16	8,5	78,9	8 9,05	9,16	9,3	7 9,5	509),67	8,30	8,32	8,39	8,74	8,8	8,87	8,99
$ k_3 $	0,35	07.	1,18	1,65	2,29	2,85	3,00	3,1	43,17	7 3,21	3,2	8 3,3	323	3,38	2,91	2,91	2,94	3,06	3,10	3,10	3,15
Г	6-я модель																				
	Ном узл	-	1	2	3	4	5	5- П9	6	7 1	7- II 1	8	8- П3	9	9. П	1	10	10 П	1 1 1	11- П7	1 1
k_3	$\left 1,0 \right _{\delta U_{s}}$		3,88	6,63	8,26	8,97	9,12	9,16	9,539	,719	,798	3,60	3,7	18,7	768,8	78,8	9,0	89,1	29,2	59,28	39,33
1 .	0,35	%	1,36	2,32	2,89	3,14	3,19	3,21	3,343	,403	,43	,01	3,0:	53,0	073,1	13,10	3,1	83,1	93,2	43,2	53,26
Г									,	7-я м	одел	ιь									
	Ном узл	-	1	2	3		4	5	6	7	8	8 П		9	10) 11	1 1	2	13	13- П19	14
1.	1,0	δU,	2,84	6,2	9 8,2	29 9,	81 1	1,8	12,8	13,7	14,	7 14	,7	15,2	2 15,	9 16	8 16	89	16,9	17,0	13,4
K3	0,35	%	0,99	2,2	0 2,9	0 3	43 4	1,14	4,50	4,81	5,1	5 5,	18	5,34	4 5,5	6 5,9	0 5,	91 :	5,93	5,96	4,70
	Ном узл	ep a	14- П6	13	1	5- 17	15- П8	16	16 П9		⁷ 1	17- 110	П		18	18- П14	18 П1	5		19- П16	19- П17
ι	1,0	δU ,	13,5	713,	5213	,641	3,56	13,8	613,9	013	901	3,93	13,	,92	5,94	16,06	16,0	0016	,911	7,11	16,95
Λ3	0,35	%	4,75	5 4,7	3 4.	,77	4,75	4,8	5 4,8	6 4,	86 4	1,88	4,	87	5,58	5,62	5,6	0 5	,92	5,99	5,93

Согласно ГОСТ 13109–97 [3], по показателю качества напряжения «установившееся отклонение напряжения» предусмотрено два вида норм: нормально допустимые и предельно допустимые. Они равны соответственно ± 5 и ± 10 %.

Как видно из табл. 2, только первые три модели в самых удаленных точках при коэффициенте загрузки трансформаторов, равном 1,0, удовлетворяют нормально допустимым нормам отклонения напряжения. Четвертая модель удовлетворяет требованиям ГОСТ по нормально допустимым нормам при коэффициенте загрузки 0,95; пятая и шестая модели — при 0,55; седьмая модель — при 0,29. Предельно допустимым нормам при коэффициенте загрузки 1,0 удовлетворяют модели № 1...6, а модель № 7 удовлетворяет требованиям ГОСТ по предельно допустимым нормам при коэффициенте загрузки 0,58.

В то же время реальная загрузка трансформаторов линий электропередачи, согласно данным диспетчерской службы РУП «Гомельэнерго» на 19 декабря 2001 г., составляет 0,1...0,3. В некоторых линиях, относящихся к первой–третьей моделям, загрузка составляет 0,4...0,5. Так, для линии № 1801 Добрушского РЭС, ПС Носовичи протяженностью 30 км и суммарной установленной мощностью трансформаторных подстанций 10/0,4 кВ, равной 3731 кВ·А, нагрузка составляет 79,2 А, что соответствует средневзвешенному коэффициенту загрузки трансформаторов 10/0,4, кВ, равному 0,37.

Резервирование линий проводилось по следующей формуле:

$$m_i + m_i, (2)$$

где m_i – номер модели линии, остающейся в работе; m_i – то же отключенной.

Значения отклонения напряжения в узлах модели при резервировании

		1 + 1 Номер узла 2 2' 1' 3' 3-П2' 3-П3'																	
Номер	узла	T		2'			1'			3'		3-1	12'		3-Г	I3'			
, 1,0	δU ,	1,11			1,60			1	,77			1,81		1,	38		1,8	3	
$ k_3 = 0.35$	%	0	,39		0	,56		0,62				0,63		0,66			0,64		
								1	1 + 2								,		
Номер	Номер узла 2				'	2	2'	11			3-П3'		1	1'	4-П	2'	4	-П3'	
1,0	δU,	0,88 1		1,	1,20 1,28		28	1,45		1	1,32		1,32		3	1,35			
$\begin{vmatrix} k_3 \\ 0.35 \end{vmatrix}$					0,	45		0,5	1	(),46	0,	0,46		6	0,47			
								1	1 + 3										
Номер	узла	2	5'	4	1 '	3'	.2		1'.	7	"	7-П6'	7-∏7	6'	6-П	3' 6-	Π4'	4-Π5'	
1,0	δU,	1,37	2,5	2 2,	71	2,86	3,1	0	3,79	2,0	55	2,66	2,87	2,90	2,94	1 2	,98	2,75	
$\begin{vmatrix} k_3 \\ 0.35 \end{vmatrix}$	%	0,48	0,8	3 0,	95	1,00	1,0	8	1,33	0,9	93	0,93	1,01	1,02	1,03	3 1	,04	0,96	
1 + 4																			
Номер	узла	2	7'	(5'	5'	4		3'	2	!'	11	6-П7	5-116	5' 8'	8-	Π4'	8-П5'	
1,0	δ <i>U</i> ,	1,61	3,2	3 3,	44	3,61	4,0	8	4,59	5,1	19	6,98	3,50	3,73	4,2	4	,26	4,25	
$ k_3 = 0.35$	%	0,56	1,1.	3 1,	20	1,26	1,4	3	1,61	1,8	32	2,44	1,23	1,31	1,4	7 1	,49	1,49	
1+5																			
Номер	узла	2 9)' 8'	7'	6'	5' 4	1'	3'	2'	1'-	8-	6-	10'	0- 10		11-		12-	
	-											1' [19'	1	14' Π:	<u>' </u>	П6		11/	
$k_3 = \frac{1.0}{0.25}$	δ <i>U</i> ,	1,7 3						-	3,9 1				5,6			5,30		+	
0,35	%	0,6 1	,3 1,4	1,4	1,6 1	,78 1	,9 [2				1,4	4 1,6	1,9	,9 2,	0[1,8]	1,8	1,9	1,9	
									+ 6			Ta T	70	To T	1,6	r	T		
Номер	узла	2 7	7' 6'	5'	4'	3' 2		١,	7- П11'	5-	8'	8- П3'	9-	9- 'П5'	0' 10-	11	11- П7'	11- П8'	
1,0	δ <i>U</i> ,	173	9/1/1	1 3	40	5,7 7,	3 16						263	635	,1 5,1				
$k_3 = 0.35$	%					2,0 2,									,8 1,8				
10,55	L.:-	0,011	, , , , ,	11,5	1,,,	2,0 2,		-	$\frac{1}{1+7}$		2,1	12,112	,2,2,2	12,211	,0[1,0	1,,0	11,02	1 .,,	
					Γ	T	1	T	T			7	T-	T			13-	8-	
Номер	узла	2	13'	12'	11'	10'	9		8'	7	6'	5'	4'	3'	2'	1,	П19'	1 1	
, 1,0	δU ,	2,41	4,55	4,59	4,64	15,59	6,2	26	,75	7,75	8,6	3 9,64	111,7	13,2	15,2	8,6	4,60	6,80	
$\begin{vmatrix} k_3 \\ 0.35 \end{vmatrix}$	%	0,84	1,59	1,61	1,62	2 1,96	2,1	8 2.	,36 2	2,71	3,0	2 3,37	4,09	4,62	5,32	,53	1,61	2,38	
Номер	LIO DO	14'	14-	15'	15-	- 15-	10		16-	17'	1	7- 17	18	, 18-	18-	19	, 19	- 19-	
помер	узла		П6'		117		_		L19.			10'111	1	1112	ГП15		111	6'П17'	
1,0	δ <i>U</i> ,																	9 4,94	
k_3 0,35	%	3,22	3,27	3,25	3,2	9 3,27	2,	76 2	2,77	2,79	2,	80 2,7	9 2,0	0 2,0	2 2,02	1,7	0 1,7	1 1,73	
		T						7	7 + 1							2001			
Номер		ļ	13			2'	4		1'		_	3'			H2'			73'	
$k_3 = 1.0$	δU ,		23,4	\perp		4,10			24,27		\vdash	24,3			1,37			,33	
0,35	%	<u> </u>	8,2		8	,43			8,49		<u></u>	8,51		- 8	.55		8,	52	
Номер	1-200	1	3 1		3'	Т	2'	-	7 + 2 1			3-П3'	Т-	4'	1 1	T2'	1 1	-П3'	
1.0	δU_{i}							- 23	21,		-	$\frac{3-113}{21,82}$	1 2						
k ₃ 0,35	00, %				$\begin{array}{c cccc} 21,70 & 21,7 \\ 7,59 & 7,62 \end{array}$			- 100	7,0			7,64		7,64		7,64		7,65	
10,55		<u> </u>				<u>_</u>	,		7 + 3	*******	<u> </u>	.,,,,,		, ,	 `			-,	
Номер	узла	13	5'	1	4'	3'	2		- 1		7'	7-П6	' 7-П	7' 6	6-Г	13'	5-П4	4-Π5'	
1,0	δU ,																	27,81	
$ k_3 = 0.35$	%	9,15				9,77	-		10,1			9,70					9,82	9,73	
10,55	L	1,13	1,0		1	-,,,,	','ل				,,,	1,,,0	1-,,,	12,,		لت	-,02	1,,,,,	

	7 + 4																					
	Номер	р узл	ıa	13	7'		6'	5'		4'		3'	2'	1		6-П	7' 5-	П6'	8'	8-	П4'	8-П5'
\int_{0}^{∞}	1,0	e.,		28,7	30,7	3 3	0,93	31,1	0 3	1,58	32	,08	32,68	34.	47	30,9	99 31	,22	31,70	31	,76	31,74
k_3	0,35	δU,		10,1	10,7	5 10	0,83	10,8	39 1	1,05	11	,23	11,44	12	.07	10,	35 10	,93	11,09	11	,11	11,11
7 + 5																						
Н	мер :	узла	13	9'	8'	7'	6'	5'	4'	3'		2'	1 ' П	i- i 1' i	6- 119'	10'	10- П4'	10- П5'	11'	11- П6		, 12- П7'
Γ,	1,0	δU,	30,1	32,4	32,7	32,9	33,3	333,8	34,	235,	83	7,63	9,032	.,83	3,4	34,4	34,4	34,5	34,0	34,	134,	134,3
$ K_3 $	0,35	%	10,5	11,3	11,4	11,5	11,6	511,8	311,9	912,	51:	3,11.	3,611	,5 1	1,6	12,0	12,0	12,0	11,9	11,	911,	911,9
	$\begin{bmatrix} 1,0 \\ 8U, \\ 9,035 \end{bmatrix} \stackrel{30,1}{\%} \stackrel{32,4}{32,7} \stackrel{32,9}{32,9} \stackrel{33,3}{33,8} \stackrel{34,2}{35,8} \stackrel{37,6}{39,0} \stackrel{39,0}{32,8} \stackrel{33,4}{34,4} \stackrel{34,4}{34,4} \stackrel{34,5}{34,0} \stackrel{34,1}{34,1} \stackrel{34,3}{34,3} \stackrel{34,1}{34,1} \stackrel{34,1}{3$																					
Но	мер у	узла	13	7'	6'	5'	4'	3'	2'	1'	7- 111	5- П9'	8'	8- П3'	9	, 9 П		10) 10- П6'	11	, 11 П	- 11- 7' П8'
Ι,	1,0	δ <i>U</i> ,	29,8	32,4	32,63	2,7	33,5	34,2	35,8	38,6	32,	5 32,8	34,5	34,6	34	,734	,8 34,	8 33,	6 33,6	33,	7 33.	,8 33,8
$ K_3 $	0,35	%	10,4	11,3	11,41	1,5	11,7	11,9	2,5	13,5	11,4	411,5	12,1	12,1	12	,1 12	,2 12,	2 11,	7 11,8	311,	811	,8 33,8 ,8 11,8
		L							B	,	7 +	7	4,									
Ho	мер у	узла	13	13'	12	. 1	11'	10'	9'	8	3'	7'	6'	5	5'	4'	3'	2	; I	,	13- П19'	8- П12'
,	1,0	δU,	37,2	2 40,	0 40,	0 4	0,1	41,0	41,	6 42	,2	43,2	44,1	45	,1	47,1	48,	5 50	,6 54	,1	40,0	42,2
κ_3	0,35	%	13,0	14,	0 14,	0 1	4,0	14,3	14,:	5 14	,7	15,1	15,4	15	,7	16,5	17,	0 17	,7 18	,9	14,0	14,7
1	Номер узла		14'		14- Пб' 15'		5- 17'	15- П8'	16'	16' <mark>16-</mark> П9'		17'	17- П10	13 П1		18'	18- П14	18 П1	1 10	9'	19- П16'	19- П17'
k_3	1,0	δ <i>U</i> ,	44,6	44,	8 44,	7 4	4,8	44,8	43,3	3 43	,3	43,4	43,4	43	,4	41,1	41,2	2 41	,2 40	,3	40,3	40,4
^3	0,35	%	15,6	15,0	5 15,	6 1:	5,7	15,6	15,	1 15	,1	15,2	15,2	15	,2	14,4	14,4	1 14	,4 14	,1	14,1	14,1

В табл. 3 приведен пример расчета отклонения напряжения при резервировании по формулам $1 + m_j$ и $7 + m_j$, номера узлов модели m_j обозначены со штрихом, а серым цветом показаны наибольшие отклонения напряжения.

Анализ результатов расчета свидетельствует, что при коэффициенте нагрузки, равном 1,0, отклонения напряжения в узлах модели удовлетворяют нормально допустимым нормам при резервировании по следующим формулам: 1+1; 1+2; 1+3; 2+1; 2+2; 2+3; 3+2. При коэффициенте нагрузки 0,35: 1+1; 1+2; 1+3; 1+4; 1+5; 1+6; 2+1; 2+2; 2+3; 2+4; 2+5; 2+6; 3+1; 3+2; 3+3; 3+4; 4+1; 4+2; 4+3.

Следовательно, при максимальной нагрузке линии возможно резервирование первых трех моделей друг с другом, при минимальной – резервирование первой—четвертой моделей с другими моделями, а резервирование пятой—седьмой моделей с другими невозможно ни в одном случае.

Проанализируем возможность резервирования не всей линии, а только ее части. При этом возобновляется питание не всех потребителей, подсоединенных к линии, а лишь их части. Так, при максимальной нагрузке ли-

нии с соблюдением допустимых норм качества возможно резервирование по следующим формулам: 1+4 до узла 3'; 1+5 до узла 6'; 1+6 до узла 4'; 1+7 до узла 11'; 2+4 до узла 5'; 2+5 до узла 9'. Резервирование 100 4, 5, 6, 7 с другими моделями невозможно даже частично.

При минимальной нагрузке линии с соблюдением нормально допустимых норм качества возможно резервирование по следующим формулам: 1+7 до узла 3'; 2+7 до узла 4'; 3+5 до узла 3'; 3+6 до узла 2'; 3+7 до узла 9'. Также невозможно резервирование пятой—седьмой моделей частично при минимальной нагрузке.

вывод

Таким образом, при существующей реальной нагрузке ВЛ 6–10 кВ уровень напряжения будет соответствовать требованиям ГОСТ. Но при возможном дальнейшем росте нагрузки отклонение напряжения будет возрастать и выйдет за пределы требуемых норм качества электроэнергии. Из анализа возможности резервирования ВЛ 6–10 кВ с соблюдением качества электроэнергии по параметру «установившееся отклонение напряжения» на примере моделей следует, что невозможно резервирование какой-либо линии с любой другой. Прежде чем произвести резервирование одной линии с другой, необходимо провести анализ качества электроэнергии, а затем – резервирование.

ЛИТЕРАТУРА

- 1. К у ц е н к о Г. Ф., П а р ф е н о в А. А. Моделирование распределительных сетей напряжением 6–10 кВ // Энергосбережение. Электроснабжение. Автоматизация: Материалы междунар. науч.-техн. конф., Гомель, 22–23 нояб. 2001 г. / Учреждение образования «ГГТУ им. П. О. Сухого». Гомель, 2001. С. 84–86.
- 2. Р у к о в о д я щ и е материалы по проектированию электроснабжения сельского хозяйства. М.: Сельэнергопроект, 1985. № 11. С. 32
- 3. Г О С Т 13109–97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Мн., 1999. С. 31.

Представлена кафедрой электроснабжения

Поступила 1.07.2002